Abstract
Introduction: Strenuous physical stress induces a range of physiological responses, the extent depending, among others, on the nature and severity of the exercise, a person's training level and overall physical resilience. This principle can also be used in an experimental set-up by measuring time-dependent changes in biomarkers for physiological processes. In a previous report, we described the effects of workload delivered on a bicycle ergometer on intestinal functionality. As a follow-up, we here describe an analysis of the kinetics of various other biomarkers.
Aim: To analyse the time-dependent changes of 34 markers for different metabolic and immunological processes, comparing four different exercise protocols and a rest protocol.
Methods: After determining individual maximum workloads, 15 healthy male participants (20-35 years) started with a rest protocol and subsequently performed (in a cross-over design with 1-week wash-out) four exercise protocols of 1-h duration at different intensities: 70% W max in a hydrated and a mildly dehydrated state, 50% W max and intermittent 85/55% W max in blocks of 2 min. Perceived exertion was monitored using the Borg' Rating of Perceived Exertion scale. Blood samples were collected both before and during exercise, and at various timepoints up to 24 h afterward. Data was analyzed using a multilevel mixed linear model with multiple test correction.
Results: Kinetic changes of various biomarkers were exercise-intensity-dependent. Biomarkers included parameters indicative of metabolic activity (e.g., creatinine, bicarbonate), immunological and hematological functionality (e.g., leukocytes, hemoglobin) and intestinal physiology (citrulline, intestinal fatty acid-binding protein, and zonulin). In general, responses to high intensity exercise of 70% W max and intermittent exercise i.e., 55/85% W max were more pronounced compared to exercise at 50% W max .
Conclusion: High (70 and 55/85% W max ) and moderate (50% W max ) intensity exercise in a bicycle ergometer test produce different time-dependent changes in a broad range of parameters indicative of metabolic activity, immunological and hematological functionality and intestinal physiology. These parameters may be considered biomarkers of homeostatic resilience. Mild dehydration intensifies these time-related changes. Moderate intensity exercise of 50% W max shows sufficient physiological and immunological responses and can be employed to test the health condition of less fit individuals.
Aim: To analyse the time-dependent changes of 34 markers for different metabolic and immunological processes, comparing four different exercise protocols and a rest protocol.
Methods: After determining individual maximum workloads, 15 healthy male participants (20-35 years) started with a rest protocol and subsequently performed (in a cross-over design with 1-week wash-out) four exercise protocols of 1-h duration at different intensities: 70% W max in a hydrated and a mildly dehydrated state, 50% W max and intermittent 85/55% W max in blocks of 2 min. Perceived exertion was monitored using the Borg' Rating of Perceived Exertion scale. Blood samples were collected both before and during exercise, and at various timepoints up to 24 h afterward. Data was analyzed using a multilevel mixed linear model with multiple test correction.
Results: Kinetic changes of various biomarkers were exercise-intensity-dependent. Biomarkers included parameters indicative of metabolic activity (e.g., creatinine, bicarbonate), immunological and hematological functionality (e.g., leukocytes, hemoglobin) and intestinal physiology (citrulline, intestinal fatty acid-binding protein, and zonulin). In general, responses to high intensity exercise of 70% W max and intermittent exercise i.e., 55/85% W max were more pronounced compared to exercise at 50% W max .
Conclusion: High (70 and 55/85% W max ) and moderate (50% W max ) intensity exercise in a bicycle ergometer test produce different time-dependent changes in a broad range of parameters indicative of metabolic activity, immunological and hematological functionality and intestinal physiology. These parameters may be considered biomarkers of homeostatic resilience. Mild dehydration intensifies these time-related changes. Moderate intensity exercise of 50% W max shows sufficient physiological and immunological responses and can be employed to test the health condition of less fit individuals.
Original language | English |
---|---|
Article number | 1006 |
Number of pages | 11 |
Journal | Frontiers in Physiology |
Volume | 11 |
Issue number | 9 |
DOIs | |
Publication status | Published - 4 Sept 2020 |
Keywords
- kinetics
- biomarkers
- exercise-intensity
- resilience
- dehydration
- physiological responses