Investigating stratospheric changes between 2009 and 2018 with halogenated trace gas data from aircraft, AirCores, and a global model focusing on CFC-11

Johannes C. Laube*, Emma C.Leedham Elvidge, Karina E. Adcock, Bianca Baier, Carl A.M. Brenninkmeijer, Huilin Chen, Elise S. Droste, Jens Uwe Grooß, Pauli Heikkinen, Andrew J. Hind, Rigel Kivi, Alexander Lojko, Stephen A. Montzka, David E. Oram, Steve Randall, Thomas Röckmann, William T. Sturges, Colm Sweeney, Max Thomas, Elinor TuffnellFelix Ploeger

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We present new observations of trace gases in the stratosphere based on a cost-effective sampling technique that can access much higher altitudes than aircraft. The further development of this method now provides detection of species with abundances in the parts per trillion (ppt) range and below. We obtain mixing ratios for six gases (CFC-11, CFC-12, HCFC-22, H-1211, H-1301, and SF6), all of which are important for understanding stratospheric ozone depletion and circulation. After demonstrating the quality of the data through comparisons with ground-based records and aircraft-based observations, we combine them with the latter to demonstrate its potential. We first compare the data with results from a global model driven by three widely used meteorological reanalyses. Secondly, we focus on CFC-11 as recent evidence has indicated renewed atmospheric emissions of that species relevant on a global scale. Because the stratosphere represents the main sink region for CFC-11, potential changes in stratospheric circulation and troposphere-stratosphere exchange fluxes have been identified as the largest source of uncertainty for the accurate quantification of such emissions. Our observations span over a decade (up until 2018) and therefore cover the period of the slowdown of CFC-11 global mixing ratio decreases measured at the Earth's surface. The spatial and temporal coverage of the observations is insufficient for a global quantitative analysis, but we do find some trends that are in contrast with expectations, indicating that the stratosphere may have contributed to the slower concentration decline in recent years. Further investigating the reanalysis-driven model data, we find that the dynamical changes in the stratosphere required to explain the apparent change in tropospheric CFC-11 emissions after 2013 are possible but with a very high uncertainty range. This is partly caused by the high variability of mass flux from the stratosphere to the troposphere, especially at timescales of a few years, and partly by large differences between runs driven by different reanalysis products, none of which agree with our observations well enough for such a quantitative analysis.

Original languageEnglish
Pages (from-to)9771-9782
Number of pages12
JournalAtmospheric Chemistry and Physics
Volume20
Issue number16
DOIs
Publication statusPublished - 20 Aug 2020

Funding

Acknowledgements. This work was funded by the ERC project EXC3ITE and the UK Natural Environment Research Council. David E. Oram also received support from the National Centre for Atmospheric Science. We gratefully acknowledge the computing time for the CLaMS simulations granted on the supercomputer JURECA at Jülich Supercomputing Centre (JSC) under the VSR project ID JICG11. We thank all who helped with the balloon launches in Finland and the UK, the numerous NOAA station personnel and site scientists for sample flask collection and measurement, and Michel Bolder for collecting the Geophysika air samples; we also acknowledge the work of the Geophysika aircraft team. Related funding came from the European Space Agency (ESA, Pre-mierEx and FRM4GHG projects), Forschungszentrum Jülich, the European Commission (FP7 projects RECONCILE, StratoClim, and H2020 project RINGO). We further thank Paul Konopka for carrying out some of the CLaMS simulations used here, Jörn Unger-mann for help with code translations, and Rolf Müller for useful discussions. Financial support. This research has been supported by the European Research Council (grant no. EXC3ITE (678904)), the Natural Environment Research Council (grant nos. NE/I021918/1 and NE/L002582/1), the Helmholtz Association (grant no. VH-NG-1128), the European Commission (grant nos. StratoClim-603557-FP7-ENV-2013-two-stage and RECONCILE-226365-FP7-ENV-2008-1), and the Dutch Science Foundation (NWO) (grant no. 865.07.001).

Fingerprint

Dive into the research topics of 'Investigating stratospheric changes between 2009 and 2018 with halogenated trace gas data from aircraft, AirCores, and a global model focusing on CFC-11'. Together they form a unique fingerprint.

Cite this