Intrinsic Task-based Evaluation for Referring Expression Generation

Guanyi Chen, Fahime Same, Kees van Deemter

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

Recently, a human evaluation study of Referring Expression Generation (REG) models had an unexpected conclusion: on WEBNLG, Referring Expressions (REs) generated by the state-of-the-art neural models were not only indistinguishable from the REs in WEBNLG but also from the REs generated by a simple rule-based system. Here, we argue that this limitation could stem from the use of a purely ratings-based human evaluation (which is a common practice in Natural Language Generation). To investigate these issues, we propose an intrinsic task-based evaluation for REG models, in which, in addition to rating the quality of REs, participants were asked to accomplish two meta-level tasks. One of these tasks concerns the referential success of each RE; the other task asks participants to suggest a better alternative for each RE. The outcomes suggest that, in comparison to previous evaluations, the new evaluation protocol assesses the performance of each REG model more comprehensively and makes the participants' ratings more reliable and discriminable.

Original languageEnglish
Title of host publicationLong Papers
EditorsLun-Wei Ku, Andre F. T. Martins, Vivek Srikumar
PublisherAssociation for Computational Linguistics (ACL)
Pages7220-7231
Number of pages12
ISBN (Electronic)9798891760943
DOIs
Publication statusPublished - Aug 2024
Event62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand
Duration: 11 Aug 202416 Aug 2024

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
Country/TerritoryThailand
CityBangkok
Period11/08/2416/08/24

Fingerprint

Dive into the research topics of 'Intrinsic Task-based Evaluation for Referring Expression Generation'. Together they form a unique fingerprint.

Cite this