Integrable Floquet QFT: Elasticity and factorization under periodic driving

Axel Cortés Cubero

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

In (1+1)-dimensional quantum field theory, integrability is typically defined as the existence of an infinite number of local charges of different Lorentz spin, which commute with the Hamiltonian. A well known consequence of integrability is that scattering of particles is elastic and factorizable. These properties are the basis for the bootstrap program, which leads to the exact computation of S-matrices and form factors. We consider periodically-driven field theories, whose stroboscopic time-evolution is described by a Floquet Hamiltonian. It was recently proposed by Gritsev and Polkovnikov that it is possible for some form of integrability to be preserved even in driven systems. If a driving protocol exists such that the Floquet Hamiltonian is integrable (such that there is an infinite number of local and independent charges, a subset of which are parity-even, that commute with it), we show that there are strong conditions on the stroboscopic time evolution of particle trajectories, analogous to S-matrix elasticity and factorization. We propose a new set of axioms for the time evolution of particles which outline a new bootstrap program, which can be used to identify and classify integrable Floquet protocols. We present some simple examples of driving protocols where Floquet integrability is manifest; in particular, we also show that under certain conditions, some integrable protocols proposed by Gritsev and Polkovnikov are solutions of our new bootstrap equations.
Original languageUndefined/Unknown
Article number025
JournalSciPost Phys.
Volume5
DOIs
Publication statusPublished - 20 Apr 2018

Keywords

  • cond-mat.stat-mech
  • hep-th
  • math-ph
  • math.MP
  • nlin.SI

Cite this