Insight into the influence of Re and Cl on Ag catalysts in ethylene epoxidation

Claudia J Keijzer, Pim T Weide, Kristiaan H Helfferich, Justyna Zieciak, Marco de Ridder, Remco Dalebout, Tracy L Lohr, John R Lockemeyer, Peter van den Brink, Petra E de Jongh*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Commercial ethylene epoxidation catalysts consist of α-alumina supported Ag particles and usually contain a mixture of promoters. High selectivity catalysts typically include a small amount of rhenium species. We studied a series of Ag catalysts promoted with Re loadings up to 4 at% (Re/(Re + Ag)), which is intentionally higher than in optimized commercial catalysts to facilitate characterization and to amplify the influence on catalysis. Sequential impregnation brought Re and Ag in such close contact that they formed a new characterized phase of AgReO4. Chemisorption experiments showed that both ReO x and AgReO4 species act as a reversible reservoir for O2. Ethylene epoxidation was performed without and with the industrially crucial ethyl chloride promoter in the feed. Without the chloride (Cl), the ethylene oxide selectivity increased when Re was present, whereas the combination of Re and Cl decreased the ethylene oxide selectivity at higher Re loadings. Systematic ethylene oxide isomerization experiments revealed that Re and Cl individually inhibit the isomerization on the Ag surface. However, Re and Cl combined increased the isomerization, which can be explained by the surface becoming overly electrophilic. This hence shows the importance of studying promoters both individually and combined.

Original languageEnglish
JournalCatalysis Science & Technology
DOIs
Publication statusE-pub ahead of print - 6 Nov 2024

Fingerprint

Dive into the research topics of 'Insight into the influence of Re and Cl on Ag catalysts in ethylene epoxidation'. Together they form a unique fingerprint.

Cite this