Abstract
We recently developed re-differentiated equine oviduct epithelial cell (REOEC) monolayers demonstrating various in vivo morphological characteristics, but lacking secondary ciliation. In this study, we evaluated the effects of fetal bovine serum, reproductive steroid hormones, Wnt- and Notch ligands and inhibitors, and different EOEC seeding densities, in both conventional wells and on microporous membranes, on EOEC morphology and, in particular, secondary ciliation. REOEC monolayers were assessed by confocal microscopy after combined staining of nuclei, cilia, and the cytoskeleton. Only Wnt ligands, Notch inhibitors and oviduct explant cell concentration affected EOEC morphology. Undesirable epithelial-mesenchymal transition was observed in REOEC monolayers exposed to Wnt3a containing medium and Wnt ligand CHIR 99021. With respect to secondary ciliation, only the combined effect of oviduct explant cell concentration and Notch inhibition steered REOEC monolayers to in vivo-like ciliation patterns. De-differentiated EOECs, formed 10 days after oviduct explant cell seeding, were reseeded on inserts; only at initial oviduct explant cell concentrations of 1 and 5 × 106 cells per well was the formation of REOEC monolayers with a high rate of diffuse ciliation supported. Within 1 month after air-liquid interface introduction, >40% and >20% of the REOECs showed secondary cilia, respectively. At higher oviduct explant cell seeding densities secondary ciliation was not supported after re-differentiation. Additionally, Notch inhibition helped boost secondary ciliation rates to >60% in REOEC monolayers with diffuse ciliation only. These monolayers demonstrated higher clathrin expression under follicular phase conditions. Overall, the ciliated REOEC monolayers better resemble in vivo oviduct epithelial cells than previous models.
Original language | English |
---|---|
Pages (from-to) | 580–599 |
Number of pages | 20 |
Journal | Biology of Reproduction |
Volume | 111 |
Issue number | 3 |
Early online date | 7 Jun 2024 |
DOIs | |
Publication status | Published - Sept 2024 |
Bibliographical note
Publisher Copyright:© The Author(s) 2024. Published by Oxford University Press on behalf of Society for the Study of Reproduction.
Funding
This study was supported by the Research Foundation-Flanders (FWO-Flanders; grant number 12I0517N) and EU COST Action 16119 CellFit.
Funders | Funder number |
---|---|
Center for Cellular Imaging | |
Faculty of Veterinary Medicine, Utrecht University | |
Faculty of Veterinary Medicine Utrecht | |
Heiko Henning | |
European Cooperation in Science and Technology | |
Department of Clinical Sciences | |
Fonds Wetenschappelijk Onderzoek | 12I0517N |
Keywords
- ciliation
- horse
- in vitro model
- oviduct