Abstract
We present an O∗(20.5n) time and O∗(20.249999n) space randomized algorithm for solving worst-case Subset Sum instances with n integers. This is the first improvement over the long-standing O∗(2n/2) time and O∗(2n/4) space algorithm due to Schroeppel and Shamir (FOCS 1979).
We breach this gap in two steps: (1) We present a space efficient reduction to the Orthogonal Vectors Problem (OV), one of the most central problem in Fine-Grained Complexity. The reduction is established via an intricate combination of the method of Schroeppel and Shamir, and the representation technique introduced by Howgrave-Graham and Joux (EUROCRYPT 2010) for designing Subset Sum algorithms for the average case regime. (2) We provide an algorithm for OV that detects an orthogonal pair among N given vectors in {0,1}d with support size d/4 in time Õ(N· 2d/d d/4). Our algorithm for OV is based on and refines the representative families framework developed by Fomin, Lokshtanov, Panolan and Saurabh (J. ACM 2016).
Our reduction uncovers a curious tight relation between Subset Sum and OV, because any improvement of our algorithm for OV would imply an improvement over the runtime of Schroeppel and Shamir, which is also a long standing open problem.
We breach this gap in two steps: (1) We present a space efficient reduction to the Orthogonal Vectors Problem (OV), one of the most central problem in Fine-Grained Complexity. The reduction is established via an intricate combination of the method of Schroeppel and Shamir, and the representation technique introduced by Howgrave-Graham and Joux (EUROCRYPT 2010) for designing Subset Sum algorithms for the average case regime. (2) We provide an algorithm for OV that detects an orthogonal pair among N given vectors in {0,1}d with support size d/4 in time Õ(N· 2d/d d/4). Our algorithm for OV is based on and refines the representative families framework developed by Fomin, Lokshtanov, Panolan and Saurabh (J. ACM 2016).
Our reduction uncovers a curious tight relation between Subset Sum and OV, because any improvement of our algorithm for OV would imply an improvement over the runtime of Schroeppel and Shamir, which is also a long standing open problem.
Original language | English |
---|---|
Title of host publication | STOC 2021: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing |
Place of Publication | New York, United States |
Publisher | Association for Computing Machinery |
Pages | 1670-1683 |
ISBN (Print) | 978-1-4503-8053-9 |
DOIs | |
Publication status | Published - Jun 2021 |
Bibliographical note
DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.Keywords
- Knapsack
- Subset Sum
- Meet-in-the-Middle
- Space Complexity
- Representation Technique