TY - UNPB

T1 - Identity types and weak factorization systems in Cauchy complete categories

AU - North, Paige Randall

N1 - 14 pages

PY - 2019/1/11

Y1 - 2019/1/11

N2 - It has been known that categorical interpretations of dependent type theory with Sigma- and Id-types induce weak factorization systems. When one has a weak factorization system (L, R) on a category C in hand, it is then natural to ask whether or not (L, R) harbors an interpretation of dependent type theory with Sigma- and Id- (and possibly Pi-) types. Using the framework of display map categories to phrase this question more precisely, one would ask whether or not there exists a class D of morphisms of C such that the retract closure of D is the class R and the pair (C, D) forms a display map category modeling Sigma- and Id- (and possibly Pi-) types. In this paper, we show, with the hypothesis that C is Cauchy complete, that there exists such a class D if and only if (C,R) itself forms a display map category modeling Sigma- and Id- (and possibly Pi-) types. Thus, we reduce the search space of our original question from a potentially proper class to a singleton.

AB - It has been known that categorical interpretations of dependent type theory with Sigma- and Id-types induce weak factorization systems. When one has a weak factorization system (L, R) on a category C in hand, it is then natural to ask whether or not (L, R) harbors an interpretation of dependent type theory with Sigma- and Id- (and possibly Pi-) types. Using the framework of display map categories to phrase this question more precisely, one would ask whether or not there exists a class D of morphisms of C such that the retract closure of D is the class R and the pair (C, D) forms a display map category modeling Sigma- and Id- (and possibly Pi-) types. In this paper, we show, with the hypothesis that C is Cauchy complete, that there exists such a class D if and only if (C,R) itself forms a display map category modeling Sigma- and Id- (and possibly Pi-) types. Thus, we reduce the search space of our original question from a potentially proper class to a singleton.

KW - math.CT

KW - cs.LO

U2 - 10.48550/arXiv.1901.03567

DO - 10.48550/arXiv.1901.03567

M3 - Preprint

SP - 1

EP - 14

BT - Identity types and weak factorization systems in Cauchy complete categories

PB - arXiv

ER -