TY - JOUR
T1 - Identification of a developmental chemoattractant in Myxococcus xanthus through metabolic engineering
AU - Kearns, Daniel B.
AU - Venot, Andre
AU - Bonner, Pamela J.
AU - Stevens, Brian
AU - Boons, Geert Jan
AU - Shimkets, Lawrence J.
PY - 2001/11/20
Y1 - 2001/11/20
N2 - Fruiting body formation of Myxococcus xanthus requires the ordered migration of tens of thousands of cells by using a form of surface motility known as gliding and chemical signal(s) that have yet to be elucidated. Directed movement is regulated by phosphatidylethanolamine (PE) purified from M. xanthus cell membranes. Because the purified PE preparation contains a remarkably diverse mixture of fatty acids, metabolic engineering was used to elucidate the biologically active fatty acid component. The mutational block in an esg mutant, which renders it defective in producing primers for branched-chain fatty acid biosynthesis, was bypassed with one of a series of primers that enriches for a particular family of branched-chain fatty acids. Each PE enrichment was observed for chemotactic activity by using an excitation assay and for fatty acid content. The excitation activity of a PE preparation was generally proportional with the concentration of the fatty acid 16:1ω5c. 1,2-O-Bis[11-(Z)-hexadecenoyl]-sn-glycero-3-phosphoethanolamine (PE-16-1ω5c/16:1ω5c) was synthesized and elicited an excitation peak at 2 ng. This peak activity occurred at a 1,000-fold lower concentration than dilauroyl PE (PE-12:0/12:0) and the peak magnitude was 2-fold higher. PE containing 16:1ω5c is likely to play a role in development because it is active at physiological concentrations and only under developmental conditions.
AB - Fruiting body formation of Myxococcus xanthus requires the ordered migration of tens of thousands of cells by using a form of surface motility known as gliding and chemical signal(s) that have yet to be elucidated. Directed movement is regulated by phosphatidylethanolamine (PE) purified from M. xanthus cell membranes. Because the purified PE preparation contains a remarkably diverse mixture of fatty acids, metabolic engineering was used to elucidate the biologically active fatty acid component. The mutational block in an esg mutant, which renders it defective in producing primers for branched-chain fatty acid biosynthesis, was bypassed with one of a series of primers that enriches for a particular family of branched-chain fatty acids. Each PE enrichment was observed for chemotactic activity by using an excitation assay and for fatty acid content. The excitation activity of a PE preparation was generally proportional with the concentration of the fatty acid 16:1ω5c. 1,2-O-Bis[11-(Z)-hexadecenoyl]-sn-glycero-3-phosphoethanolamine (PE-16-1ω5c/16:1ω5c) was synthesized and elicited an excitation peak at 2 ng. This peak activity occurred at a 1,000-fold lower concentration than dilauroyl PE (PE-12:0/12:0) and the peak magnitude was 2-fold higher. PE containing 16:1ω5c is likely to play a role in development because it is active at physiological concentrations and only under developmental conditions.
UR - http://www.scopus.com/inward/record.url?scp=0035923622&partnerID=8YFLogxK
U2 - 10.1073/pnas.251484598
DO - 10.1073/pnas.251484598
M3 - Article
C2 - 11717456
AN - SCOPUS:0035923622
SN - 0027-8424
VL - 98
SP - 13990
EP - 13994
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 24
ER -