Hypothermic and cryogenic preservation of cardiac tissue-engineered constructs

Jasmijn Janssen, Nino Chirico, Madison J Ainsworth, Gerardo Cedillo-Servin, Martina Viola, Inge Dokter, Tina Vermonden, Pieter A Doevendans, Margarida Serra, Ilja K Voets, Jos Malda, Miguel Castilho, Linda W van Laake, Joost P G Sluijter, Vasco Sampaio-Pinto, Alain van Mil*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Cardiac tissue engineering (cTE) has already advanced towards the first clinical trials, investigating safety and feasibility of cTE construct transplantation in failing hearts. However, the lack of well-established preservation methods poses a hindrance to further scalability, commercialization, and transportation, thereby reducing their clinical implementation. In this study, hypothermic preservation (4 °C) and two methods for cryopreservation ( i.e., a slow and fast cooling approach to -196 °C and -150 °C, respectively) were investigated as potential solutions to extend the cTE construct implantation window. The cTE model used consisted of human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts embedded in a natural-derived hydrogel and supported by a polymeric melt electrowritten hexagonal scaffold. Constructs, composed of cardiomyocytes of different maturity, were preserved for three days, using several commercially available preservation protocols and solutions. Cardiomyocyte viability, function (beat rate and calcium handling), and metabolic activity were investigated after rewarming. Our observations show that cardiomyocytes' age did not influence post-rewarming viability, however, it influenced construct function. Hypothermic preservation with HypoThermosol® ensured cardiomyocyte viability and function. Furthermore, fast freezing outperformed slow freezing, but both viability and function were severely reduced after rewarming. In conclusion, whereas long-term preservation remains a challenge, hypothermic preservation with HypoThermosol® represents a promising solution for cTE construct short-term preservation and potential transportation, aiding in off-the-shelf availability, ultimately increasing their clinical applicability.

Original languageEnglish
Pages (from-to)3866-3881
Number of pages16
JournalBiomaterials Science
Volume12
Issue number15
Early online date24 Jun 2024
DOIs
Publication statusPublished - 7 Aug 2024

Fingerprint

Dive into the research topics of 'Hypothermic and cryogenic preservation of cardiac tissue-engineered constructs'. Together they form a unique fingerprint.

Cite this