TY - JOUR
T1 - Hydrogen Evolution Electrocatalysis with a Molecular Cobalt Bis(alkylimidazole)methane Complex in DMF: a Critical Activity Analysis
AU - de Vos, Sander
AU - Otten, Maartje
AU - Wissink, Tim
AU - Broere, Danny
AU - Hensen, Emiel J. M.
AU - Klein Gebbink, Bert
PY - 2022/11
Y1 - 2022/11
N2 - [Co(HBMIMPh2)2](BF4)2 (1) [HBMIMPh2=bis(1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methane] was investigated for its electrocatalytic hydrogen evolution performance in DMF using voltammetry and during controlled potential/current electrolysis (CPE/CCE) in a novel in-line product detection setup. Performances were benchmarked against three reported molecular cobalt hydrogen evolution reaction (HER) electrocatalysts, [Co(dmgBF2)2(solv)2] (2) (dmgBF2=difluoroboryldimethylglyoximato), [Co(TPP)] (3) (TPP=5,10,15,20-tetraphenylporphyrinato), and [Co(bapbpy)Cl](Cl) (4) [bapbpy=6,6′-bis-(2-aminopyridyl)-2,2′-bipyridine], showing distinct performances differences with 1 being the runner up in H2 evolution during CPE and the best catalyst in terms of overpotential and Faradaic efficiency during CCE. After bulk electrolysis, for all of the complexes, a deposit on the glassy carbon electrode was observed, and post-electrolysis X-ray photoelectron spectroscopy (XPS) analysis of the deposit formed from 1 demonstrated only a minor cobalt contribution (0.23 %), mainly consisting of Co2+. Rinse tests on the deposits derived from 1 and 2 showed that the initially observed distinct activity was (partly) preserved for the deposits. These observations indicate that the molecular design of the complexes dictates the features of the formed deposit and therewith the observed activity.
AB - [Co(HBMIMPh2)2](BF4)2 (1) [HBMIMPh2=bis(1-methyl-4,5-diphenyl-1H-imidazol-2-yl)methane] was investigated for its electrocatalytic hydrogen evolution performance in DMF using voltammetry and during controlled potential/current electrolysis (CPE/CCE) in a novel in-line product detection setup. Performances were benchmarked against three reported molecular cobalt hydrogen evolution reaction (HER) electrocatalysts, [Co(dmgBF2)2(solv)2] (2) (dmgBF2=difluoroboryldimethylglyoximato), [Co(TPP)] (3) (TPP=5,10,15,20-tetraphenylporphyrinato), and [Co(bapbpy)Cl](Cl) (4) [bapbpy=6,6′-bis-(2-aminopyridyl)-2,2′-bipyridine], showing distinct performances differences with 1 being the runner up in H2 evolution during CPE and the best catalyst in terms of overpotential and Faradaic efficiency during CCE. After bulk electrolysis, for all of the complexes, a deposit on the glassy carbon electrode was observed, and post-electrolysis X-ray photoelectron spectroscopy (XPS) analysis of the deposit formed from 1 demonstrated only a minor cobalt contribution (0.23 %), mainly consisting of Co2+. Rinse tests on the deposits derived from 1 and 2 showed that the initially observed distinct activity was (partly) preserved for the deposits. These observations indicate that the molecular design of the complexes dictates the features of the formed deposit and therewith the observed activity.
U2 - 10.1002/cssc.202201308
DO - 10.1002/cssc.202201308
M3 - Article
SN - 1864-5631
VL - 15
SP - 1
EP - 9
JO - ChemSusChem
JF - ChemSusChem
IS - 22
M1 - e202201308
ER -