Hydraulic diversity stabilizes productivity in a large-scale subtropical tree biodiversity experiment

Florian Schnabel, Xiaojuan Liu, Matthias Kunz, Kathryn E. Barry, Franca J. Bongers, Helge Bruelheide, Andreas Fichtner, Werner Härdtle, Shan Li, Claas-Thido Pfaff, Bernhard Schmid, Julia A. Schwarz, Zhiyao Tang, Bo Yang, Jürgen Bauhus, Goddert von Oheimb, Keping Ma, Christian Wirth

Research output: Working paperPreprintAcademic

Abstract

Extreme climatic events threaten forests and their climate mitigation potential globally. Understanding the drivers promoting ecosystem stability is therefore considered crucial to mitigate adverse climate change effects on forests. Here, we use structural equation models to explain how tree species richness, asynchronous species dynamics and diversity in hydraulic traits affect the stability of forest productivity along an experimentally manipulated biodiversity gradient ranging from 1 to 24 tree species. Tree species richness improved stability by increasing species asynchrony. That is, at higher species richness, inter-annual variation in productivity among tree species buffered the community against stress-related productivity declines. This effect was mediated by the diversity of species’ hydraulic traits regarding drought tolerance and stomatal control, but not by the community-weighted means of these traits. The identified mechanisms by which tree species richness stabilizes forest productivity emphasize the importance of hydraulically diverse, mixed-species forests to adapt to climate change.
Original languageEnglish
PublisherbioRxiv
Number of pages39
DOIs
Publication statusPublished - 10 Mar 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'Hydraulic diversity stabilizes productivity in a large-scale subtropical tree biodiversity experiment'. Together they form a unique fingerprint.

Cite this