TY - JOUR
T1 - How to handle missing data
T2 - A comparison of different approaches
AU - Peeters, Margot
AU - Zondervan-Zwijnenburg, M. A. J.
AU - Vink, Gerko
AU - van de Schoot, Rens
PY - 2015/7/4
Y1 - 2015/7/4
N2 - Many researchers face the problem of missing data in longitudinal research. Especially, high risk samples are characterized by missing data which can complicate analyses and the interpretation of results. In the current study, our aim was to find the most optimal and best method to deal with the missing data in a specific study with many missing data on the outcome variable. Therefore, different techniques to handle missing data were evaluated, and a solution to efficiently handle substantial amounts of missing data was provided. A simulation study was conducted to determine the most optimal method to deal with the missing data. Results revealed that multiple imputation (MI) using predictive mean matching was the most optimal method with respect to lowest bias and the smallest confidence interval (CI) while maintaining power. Listwise deletion and last observation carried backward also scored acceptable with respect to bias; however, CIs were much larger and sample size almost halved using these methods. Longitudinal research in high risk samples could benefit from using MI in future research to handle missing data. The paper ends with a checklist for handling missing data.
AB - Many researchers face the problem of missing data in longitudinal research. Especially, high risk samples are characterized by missing data which can complicate analyses and the interpretation of results. In the current study, our aim was to find the most optimal and best method to deal with the missing data in a specific study with many missing data on the outcome variable. Therefore, different techniques to handle missing data were evaluated, and a solution to efficiently handle substantial amounts of missing data was provided. A simulation study was conducted to determine the most optimal method to deal with the missing data. Results revealed that multiple imputation (MI) using predictive mean matching was the most optimal method with respect to lowest bias and the smallest confidence interval (CI) while maintaining power. Listwise deletion and last observation carried backward also scored acceptable with respect to bias; however, CIs were much larger and sample size almost halved using these methods. Longitudinal research in high risk samples could benefit from using MI in future research to handle missing data. The paper ends with a checklist for handling missing data.
KW - high risk sample
KW - longitudinal research
KW - missing data
KW - multiple imputation
UR - http://www.scopus.com/inward/record.url?scp=84938951497&partnerID=8YFLogxK
U2 - 10.1080/17405629.2015.1049526
DO - 10.1080/17405629.2015.1049526
M3 - Article
AN - SCOPUS:84938951497
SN - 1740-5629
VL - 12
SP - 377
EP - 394
JO - European Journal of Developmental Psychology
JF - European Journal of Developmental Psychology
IS - 4
ER -