How germinal centers evolve broadly neutralizing antibodies: the breadth of the follicular helper T cell response

Rob J De Boer, Alan S Perelson

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Many HIV-1 infected patients evolve broadly neutralizing antibodies (bnAbs). This evolutionary process typically takes several years, and is poorly understood as selection taking place in germinal centers occurs on the basis of antibody affinity. B cells with the highest affinity receptors tend to acquire the most antigen from the FDC network, and present the highest density of cognate peptides to follicular helper T cells (Tfh), which provide survival signals to the B cell. BnAbs are therefore only expected to evolve when the B cell lineage evolving breadth is consistently capturing and presenting more peptides to Tfh cells than other lineages of more specific B cells. Here we develop mathematical models of Tfh in germinal centers to explicitly define the mechanisms of selection in this complex evolutionary process.Our results suggest that broadly reactive B cells presenting a high density of pMHC are readily outcompeted by B cells responding to lineages of HIV-1 that transiently dominate the within host viral population. Conversely, if broadly reactive B cells acquire a large variety of several HIV-1 proteins from the FDC network and present a high diversity of several pMHC, they be rescued by a large fraction of the Tfh repertoire in the germinal center. Under such circumstances the evolution of bnAbs is much more consistent. Increasing the magnitude of the Tfh response, or the breadth of the Tfh repertoire, both markedly facilitate the evolution of bnAbs. Because both can be increased by vaccination with several HIV-1 proteins, this calls for experiments testing.Importance Many HIV-infected patients slowly evolve antibodies that can neutralize a large variety of viruses. Such "broadly neutralizing antibodies" (bnAbs) could in the future become therapeutic agents. BnAbs appear very late and patients are typically not protected by them. At the moment we fail to understand why this takes so long, and how the immune system selects for broadly neutralizing capacity. Typically antibodies are selected based on affinity and not on breadth. We develop mathematical models to study two different mechanisms by which the immune system can select for broadly neutralizing capacity. One of these is based upon the repertoire of different follicular helper T cells (Tfh) in germinal centers. We suggest that broadly reactive B cells may interact with a larger fraction of this repertoire, and demonstrate that this would select for bnAbs. Intriguingly, this suggest that broadening the Tfh repertoire by vaccination may speed up the evolution of bnAbs.

Original languageEnglish
Article number e00983-17
JournalJournal of Virology
Volume91
Issue number22
DOIs
Publication statusPublished - Nov 2017

Fingerprint

Dive into the research topics of 'How germinal centers evolve broadly neutralizing antibodies: the breadth of the follicular helper T cell response'. Together they form a unique fingerprint.

Cite this