Household air pollution and epigenetic aging in Xuanwei, China

Batel Blechter*, Andres Cardenas, Junming Shi, Jason Y Y Wong, Wei Hu, Mohammad L Rahman, Charles Breeze, George S Downward, Lützen Portengen, Yongliang Zhang, Bofu Ning, Bu-Tian Ji, Richard Cawthon, Jihua Li, Kaiyun Yang, Anne Bozack, H Dean Hosgood, Debra T Silverman, Yunchao Huang, Nathaniel RothmanRoel Vermeulen, Qing Lan

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

BACKGROUND: Household air pollution (HAP) from indoor combustion of solid fuel is a global health burden linked to lung cancer. In Xuanwei, China, lung cancer rate for nonsmoking women is among the highest in the world and largely attributed to high levels of polycyclic aromatic hydrocarbons (PAHs) that are produced from combustion of smoky (bituminous) coal used for cooking and heating. Epigenetic age acceleration (EAA), a DNA methylation-based biomarker of aging, has been shown to be highly correlated with biological processes underlying the susceptibility of age-related diseases. We aim to assess the association between HAP exposure and EAA.

METHODS: We analyzed data from 106 never-smoking women from Xuanwei, China. Information on fuel type was collected using a questionnaire, and validated exposure models were used to predict levels of 43 HAP constituents. Exposure clusters were identified using hierarchical clustering. EAA was derived for five epigenetic clocks defined as the residuals resulting from regressing each clock on chronological age. We used generalized estimating equations to test associations between exposure clusters derived from predicted levels of HAP exposure, ambient 5-methylchrysene (5-MC), a PAH previously found to be associated with risk of lung cancer, and EAA, while accounting for repeated-measurements and confounders.

RESULTS: We observed an increase in GrimAge EAA for clusters with 31 and 33 PAHs reflecting current (β = 0.77 y per standard deviation (SD) increase, 95 % CI:0.36,1.19) and childhood (β = 0.92 y per SD, 95 % CI:0.40,1.45) exposure, respectively. 5-MC (ng/m 3-year) was found to be associated with GrimAge EAA for current (β = 0.15 y, 95 % CI:0.05,0.25) and childhood (β = 0.30 y, 95 % CI:0.13,0.47) exposure.

CONCLUSIONS: Our findings suggest that exposure to PAHs from indoor smoky coal combustion, particularly 5-MC, is associated with GrimAge EAA, a biomarker of mortality.

Original languageEnglish
Article number108041
Number of pages7
JournalEnvironment International
Volume178
Early online date17 Jun 2023
DOIs
Publication statusPublished - Aug 2023

Bibliographical note

Publisher Copyright:
© 2023

Funding

The authors acknowledge the research contributions of the Cancer Genomics Research Laboratory for their expertise, execution, and support of this research in the areas of project planning, wet laboratory processing of specimens, and bioinformatics analysis of generated data. This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under NCI Contract No. 75N910D00024. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. The authors acknowledge the research contributions of the Cancer Genomics Research Laboratory for their expertise, execution, and support of this research in the areas of project planning, wet laboratory processing of specimens, and bioinformatics analysis of generated data. This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under NCI Contract No. 75N910D00024. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

FundersFunder number
U.S. government
National Institutes of Health
U.S. Department of Health and Human Services
National Cancer Institute75N910D00024

    Keywords

    • 5-methylchrysene
    • Epigenetic age acceleration
    • Household air pollution
    • Lung cancer
    • Polycyclic aromatic hydrocarbons

    Fingerprint

    Dive into the research topics of 'Household air pollution and epigenetic aging in Xuanwei, China'. Together they form a unique fingerprint.

    Cite this