TY - JOUR
T1 - High turnover of Tissue Factor enables efficient intracellular delivery of antibody-drug conjugates
AU - de Goeij, Bart Ecg
AU - Satijn, David
AU - Freitag, Claudia M
AU - Wubbolts, Richard
AU - Bleeker, Wim K
AU - Khasanov, Alisher
AU - Zhu, Tong
AU - Chen, Gary
AU - Miao, David
AU - van Berkel, Patrick Hc
AU - Parren, Paul W H I
N1 - Copyright © 2015, American Association for Cancer Research.
PY - 2015/2/27
Y1 - 2015/2/27
N2 - Antibody drug conjugates (ADC) are emerging as powerful cancer treatments that combine antibody-mediated tumor targeting with the potent cytotoxic activity of toxins. We recently reported the development of a novel ADC that delivers the cytotoxic payload monomethyl auristatin E (MMAE) to tumor cells expressing tissue factor (TF). By carefully selecting a TF-specific antibody that interferes with TF:FVIIa-dependent intracellular signaling, but not with the pro-coagulant activity of TF, an ADC was developed (TF-011-MMAE/HuMax-TF-ADC) that efficiently kills tumor cells, with an acceptable toxicology profile. To gain more insight in the efficacy of TF-directed ADC treatment we compared the internalization characteristics and intracellular routing of TF with the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Both in absence and presence of antibody, TF demonstrated more efficient internalization, lysosomal targeting and degradation than EGFR and HER2. By conjugating TF, EGFR and HER2 specific antibodies with duostatin-3, a toxin that induces potent cytotoxicity upon antibody-mediated internalization but lacks the ability to induce bystander killing, we were able to compare cytotoxicity of ADCs with different tumor specificities. TF-ADC demonstrated effective killing against tumor cell lines with variable levels of target expression. In xenograft models, TF-ADC was relatively potent in reducing tumor growth compared to EGFR- and HER2- ADCs. We hypothesize that the constant turnover of TF on tumor cells, makes this protein specifically suitable for an ADC approach.
AB - Antibody drug conjugates (ADC) are emerging as powerful cancer treatments that combine antibody-mediated tumor targeting with the potent cytotoxic activity of toxins. We recently reported the development of a novel ADC that delivers the cytotoxic payload monomethyl auristatin E (MMAE) to tumor cells expressing tissue factor (TF). By carefully selecting a TF-specific antibody that interferes with TF:FVIIa-dependent intracellular signaling, but not with the pro-coagulant activity of TF, an ADC was developed (TF-011-MMAE/HuMax-TF-ADC) that efficiently kills tumor cells, with an acceptable toxicology profile. To gain more insight in the efficacy of TF-directed ADC treatment we compared the internalization characteristics and intracellular routing of TF with the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Both in absence and presence of antibody, TF demonstrated more efficient internalization, lysosomal targeting and degradation than EGFR and HER2. By conjugating TF, EGFR and HER2 specific antibodies with duostatin-3, a toxin that induces potent cytotoxicity upon antibody-mediated internalization but lacks the ability to induce bystander killing, we were able to compare cytotoxicity of ADCs with different tumor specificities. TF-ADC demonstrated effective killing against tumor cell lines with variable levels of target expression. In xenograft models, TF-ADC was relatively potent in reducing tumor growth compared to EGFR- and HER2- ADCs. We hypothesize that the constant turnover of TF on tumor cells, makes this protein specifically suitable for an ADC approach.
U2 - 10.1158/1535-7163.MCT-14-0798
DO - 10.1158/1535-7163.MCT-14-0798
M3 - Article
C2 - 25724665
SN - 1535-7163
VL - 14
SP - 1130
EP - 1140
JO - Molecular Cancer Therapeutics
JF - Molecular Cancer Therapeutics
ER -