High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles

Michiel van de Waterbeemd, Kyle L Fort, Dmitriy Boll, Maria Reinhardt-Szyba, Andrew Routh, Alexander Makarov, Albert J R Heck

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Investigation of the structure, assembly and function of protein-nucleic acid macromolecular machines requires multidimensional molecular and structural biology approaches. We describe modifications to an Orbitrap mass spectrometer, enabling high-resolution native MS analysis of 0.8- to 2.3-MDa prokaryotic 30S, 50S and 70S ribosome particles and the 9-MDa Flock House virus. The instrument's improved mass range and sensitivity readily exposes unexpected binding of the ribosome-associated protein SRA.

Original languageEnglish
Pages (from-to)283-286
Number of pages4
JournalNature Methods
Volume14
DOIs
Publication statusPublished - 23 Jan 2017

Keywords

  • Analytical biochemistry
  • Mass spectrometry
  • Proteins
  • Structure determination

Fingerprint

Dive into the research topics of 'High-fidelity mass analysis unveils heterogeneity in intact ribosomal particles'. Together they form a unique fingerprint.

Cite this