Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2

Lin Liu, Pradeep Chopra, Xiuru Li, Kim M Bouwman, S Mark Tompkins, Margreet A Wolfert, Robert P de Vries, Geert-Jan Boons

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is causing an unprecedented global pandemic demanding the urgent development of therapeutic strategies. Microarray binding experiments, using an extensive heparan sulfate (HS) oligosaccharide library, showed that the receptor binding domain (RBD) of the spike of SARS-CoV-2 can bind HS in a length- and sequence-dependent manner. A hexasaccharide composed of IdoA2S-GlcNS6S repeating units was identified as the minimal binding epitope. Surface plasmon resonance showed the SARS-CoV-2 spike protein binds with a much higher affinity to heparin (K D = 55 nM) compared to the RBD (K D = 1 μM) alone. It was also found that heparin does not interfere in angiotensin-converting enzyme 2 (ACE2) binding or proteolytic processing of the spike. However, exogenous administered heparin or a highly sulfated HS oligosaccharide inhibited RBD binding to cells. Furthermore, an enzymatic removal of HS proteoglycan from physiological relevant tissue resulted in a loss of RBD binding. The data support a model in which HS functions as the point of initial attachment allowing the virus to travel through the glycocalyx by low-affinity high-avidity interactions to reach the cell membrane, where it can engage with ACE2 for cell entry. Microarray binding experiments showed that ACE2 and HS can simultaneously engage with the RBD, and it is likely no dissociation between HS and RBD is required for binding to ACE2. The results highlight the potential of using HS oligosaccharides as a starting material for therapeutic agent development.

Original languageEnglish
Pages (from-to)1009-1018
Number of pages10
JournalACS Central Science
Volume7
Issue number6
DOIs
Publication statusPublished - 23 Jun 2021

Bibliographical note

Funding Information:
This research was supported by the National Institutes of Health (P41GM103390 and R01HL151617 to G.-J.B.). R.P.dV is a recipient of an ERC Starting Grant from the European Commission (802780) and a Beijerinck Premium of the Royal Dutch Academy of Sciences. We thank S. Herfst (Department of Viroscience, Erasmus Medical Center) for the ferret tissues and G. Wright (Addgene) for providing HPSE-bio-His (Plasmid No. 53407). Plasmids for expression of SARS-CoV-2 spike and RBD proteins were provided by Dr. F. Krammer (Icahn School of Medicine at Mount Sinai, produced under NIAID CEIRS contract HHSN272201400008C). The production of recombinant proteins was supported by NIAID Centers of Excellence for Influenza Research and Surveillance contract HHSN272201400004C to S.M.T.

Publisher Copyright:
© 2021 The Authors. Published by American Chemical Society.

Fingerprint

Dive into the research topics of 'Heparan Sulfate Proteoglycans as Attachment Factor for SARS-CoV-2'. Together they form a unique fingerprint.

Cite this