Abstract
Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) is a mammalian protein that is a member of the Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis related proteins group 1 (CAP) superfamily of proteins. A role for the common CAP domain in the function of the diverse superfamily members has not been described so far. Here, we show by a combination of independent techniques including electron microscopy, Thioflavin T fluorescence, and circular dichroism that GAPR-1 has the capability to form amyloid-like fibrils in the presence of liposomes containing negatively charged lipids. Surprisingly, GAPR-1 was also shown to bind the amyloid-oligomer specific antibody A11 in the absence of lipids, indicating that GAPR-1 has an intrinsic tendency to form oligomers. This behavior is characteristic for proteins that interfere with Aβ aggregation and indeed we found that GAPR-1 effectively inhibited aggregation of Aβ(1-40) peptide. Immuno-dot blot analysis revealed that GAPR-1 binds to prefibrillar oligomeric Aβ structures during the early stages of fibril formation. Another CAP domain-containing protein, CRISP2, was also capable of forming fibrils, indicating that oligomerization and fibril formation is a shared characteristic between CAP family members. We suggest that the CAP domain may regulate protein oligomerization in a large variety of proteins that define the CAP superfamily.
Original language | English |
---|---|
Pages (from-to) | 88-96 |
Number of pages | 9 |
Journal | Amyloid - Journal of Protein Folding Disorders |
Volume | 21 |
Issue number | 2 |
DOIs | |
Publication status | Published - Jun 2014 |
Keywords
- Amyloid
- Circular Dichroism
- Glycoproteins
- Humans
- Membrane Proteins
- Phospholipids