GLOFRIM – A globally applicable framework for integrated hydrologic-hydrodynamic inundation modelling

J.M. Hoch, Jeffrey Neal, Fedor Baart, L.P.H. van Beek, Hessel Winsemius, Paul D. Bates, M.F.P. Bierkens

Research output: Contribution to conferenceAbstractOther research output

Abstract

Currently, many approaches to provide detailed flood hazard and risk estimates are built upon specific hydrologic or hydrodynamic model routines. By applying these routines in stand-alone mode important processes can however not accurately be described. For instance, global hydrologic models run at coarse spatial resolution, not supporting the detailed simulation of flood hazard. Hydrodynamic models excel in the computations of open water flow dynamics, but dependent on specific runoff or observed discharge as input. In most cases hydrodynamic models are forced at the boundaries and thus cannot account for water sources within the model domain, limiting the simulation of inundation dynamics to reaches fed by upstream boundaries.
Recently, Hoch et al. (HESS, 2017) coupled PCR-GLOBWB (PCR) with the hydrodynamic model Delft3D Flexible Mesh (DFM). By means of the Basic Model Interface both models were connected on a cell-by-cell basis, allowing for spatially explicit coupling. Model results showed that discharge simulations can profit from model coupling compared to stand-alone runs.

As model results of a coupled simulation depend on the quality of the models, it would be worthwhile to allow a suite of models to be coupled. To facilitate this, we present GLOFRIM, a globally applicable framework for integrated hydrologic-hydrodynamic inundation modelling. In the current version coupling between PCR and both DFM and LISFLOOD-FP (LFP) can be established (Hoch et al., GMDD, 2017).

First results show that differences between both hydrodynamic models are present in the timing of peak discharge which is most likely due to differences in channel-floodplain interactions and bathymetry processing. Having benchmarked inundation extent, LFP and DFM agree for around half of the inundated area which is attributable to variations in grid size. Results also indicate that, despite using identical boundary conditions and forcing, the schematization itself as well as internal processes can still greatly influence results.

In general, the application of GLOFRIM brings several advantages. For example, with PCR being a global model, it is possible to reduce the dependency of observation data for discharge boundaries, and benchmarking of hydrodynamic models is greatly facilitated by employing identical hydrologic forcing.
Original languageEnglish
Publication statusPublished - 2017
EventAGU Fall Meeting 2017 - New Orleans, United States
Duration: 11 Dec 201715 Dec 2017
https://fallmeeting.agu.org/2017/#

Conference

ConferenceAGU Fall Meeting 2017
Abbreviated titleAGU Fall Meeting 2017
Country/TerritoryUnited States
CityNew Orleans
Period11/12/1715/12/17
Internet address

Fingerprint

Dive into the research topics of 'GLOFRIM – A globally applicable framework for integrated hydrologic-hydrodynamic inundation modelling'. Together they form a unique fingerprint.

Cite this