Abstract
Sulfate reduction is a globally important yet poorly quantified redox process in marine sediments. We developed an artificial neural network trained with 199 sulfate profiles, constrained with geomorphological and geochemical maps to estimate global sulfate reduction rate distributions. Globally, 11.3 Tmol sulfate are reduced yearly, ~15% of previous estimates, accounting for the oxidation of 12-29% of the organic carbon flux to the sea floor. Combined with global cell distributions in marine sediments, these results indicate a strong contrast in sub–sea-floor prokaryote habitats: in continental margins global cell numbers in sulfate-depleted sediment exceed those in the overlying sulfate-bearing sediment by an order of magnitude, whereas in the abyss most life occurs in oxic and/or sulfate-reducing sediments.
Original language | English |
---|---|
Pages (from-to) | 889-891 |
Number of pages | 3 |
Journal | Science |
Volume | 344 |
Issue number | 6186 |
DOIs | |
Publication status | Published - 23 May 2014 |