TY - JOUR
T1 - Giant saltwater inflow in AD 1951 triggered Baltic Sea hypoxia
AU - Moros, Matthias
AU - Kotilainen, Aarno Tapio
AU - Snowball, Ian
AU - Neumann, Thomas
AU - Perner, Kerstin
AU - Meier, H. E. Markus
AU - Papenmeier, Svenja
AU - Kolling, Henriette
AU - Leipe, Thomas
AU - Sinninghe Damste, Jaap S.
AU - Schneider, Ralph
N1 - Publisher Copyright:
© 2023 The Authors. Boreas published by John Wiley & Sons Ltd on behalf of The Boreas Collegium.
PY - 2024/4
Y1 - 2024/4
N2 - A marked sedimentological change in subsurface sediments from the entire Baltic Proper, the Baltic Sea, has been previously noted. Our detailed work on a variety of multi-cores from basin-wide transects indicates that this sedimentological change was caused by a large shift in environmental conditions during the 1950s. Until the 1950s, the water column was rather weakly stratified and winter-time convection – although weakened during the post Little Ice Age warming – was still able to ventilate the bottom waters of the Baltic Proper. Therefore, complete sediment sequences only accumulated in calm waters deeper than 150–160 m. High-resolution benthic foraminiferal records of subsurface sediments obtained along the saline water inflow pathway in combination with historical data indicate that the depositional environment changed drastically owing to the giant saline water inflow in AD 1951. The accompanied sharpening of the halo(pycno)cline triggered a collapse in the ventilation of the basin, resulting in oxygen-deficient bottom waters. This deficiency, in turn, caused the onset of phosphate release from the sediments, which accelerated primary production. The ventilation collapse also enabled the onset of deposition of organic carbon-rich sediments also in shallower water areas as calm conditions prevailed up to the modern winter mixing depth (60–70 m). A slight return to Little Ice Age-type conditions was observed during the late 1980s when temperatures decreased and stratification weakened. These conditions gave rise to a reduction in hypoxic areas and to a bottom-water ventilation, most pronounced in the north of the so-called Baltic Sea Klint, a hydrographic and topographic barrier. However, the general environmental conditions essentially have not changed since the 1950s. Remarkably, external (temperature and stratification) in combination with internal factors (e.g. ventilation collapse and phosphate release) were able to change the redox conditions of the Baltic Proper from oxic to hypoxic within less than 10 years.
AB - A marked sedimentological change in subsurface sediments from the entire Baltic Proper, the Baltic Sea, has been previously noted. Our detailed work on a variety of multi-cores from basin-wide transects indicates that this sedimentological change was caused by a large shift in environmental conditions during the 1950s. Until the 1950s, the water column was rather weakly stratified and winter-time convection – although weakened during the post Little Ice Age warming – was still able to ventilate the bottom waters of the Baltic Proper. Therefore, complete sediment sequences only accumulated in calm waters deeper than 150–160 m. High-resolution benthic foraminiferal records of subsurface sediments obtained along the saline water inflow pathway in combination with historical data indicate that the depositional environment changed drastically owing to the giant saline water inflow in AD 1951. The accompanied sharpening of the halo(pycno)cline triggered a collapse in the ventilation of the basin, resulting in oxygen-deficient bottom waters. This deficiency, in turn, caused the onset of phosphate release from the sediments, which accelerated primary production. The ventilation collapse also enabled the onset of deposition of organic carbon-rich sediments also in shallower water areas as calm conditions prevailed up to the modern winter mixing depth (60–70 m). A slight return to Little Ice Age-type conditions was observed during the late 1980s when temperatures decreased and stratification weakened. These conditions gave rise to a reduction in hypoxic areas and to a bottom-water ventilation, most pronounced in the north of the so-called Baltic Sea Klint, a hydrographic and topographic barrier. However, the general environmental conditions essentially have not changed since the 1950s. Remarkably, external (temperature and stratification) in combination with internal factors (e.g. ventilation collapse and phosphate release) were able to change the redox conditions of the Baltic Proper from oxic to hypoxic within less than 10 years.
KW - Basins
KW - Benthic foraminifera
KW - Climate-change
KW - Cyanobacterial blooms
KW - Ecosystem
KW - Mn-carbonate formation
KW - Variability
KW - Water
UR - http://www.scopus.com/inward/record.url?scp=85180641312&partnerID=8YFLogxK
U2 - 10.1111/bor.12643
DO - 10.1111/bor.12643
M3 - Article
SN - 0300-9483
VL - 53
SP - 125
EP - 138
JO - Boreas
JF - Boreas
IS - 2
ER -