Abstract
We show that the momentum-dependent scaling exponents of the holographic fermion self-energy of the conformal-to-AdS2 Gubser-Rocha model can describe new findings from angle-resolved photoemission spectroscopy experiments on a single-layer (Pb,Bi)2Sr2-xLaxCuO6+δ copper oxide. In particular, it was recently observed in high-precision measurements on constant energy cuts along the nodal direction that the spectral function departs from the Lorentzian line shape that is expected from the power-law-liquid model of a nodal self-energy, with an imaginary part featureless in momentum as ςPLL′′(ω)∝(ω2)α. By direct comparison with experimental results, we provide evidence that this departure from either a Fermi liquid or the power-law liquid, resulting in an asymmetry of the spectral function as a function of momentum around the central peak, is captured at low temperature and all dopings by a semiholographic model that predicts a momentum-dependent scaling exponent in the electron self-energy as ς(ω,k)∝ω(-ω2)α(1-(k-kF)/kF)-1/2, with ħkF the Fermi momentum.
Original language | English |
---|---|
Article number | 155140 |
Number of pages | 23 |
Journal | Physical Review B |
Volume | 109 |
Issue number | 15 |
DOIs | |
Publication status | Published - 15 Apr 2024 |
Bibliographical note
Publisher Copyright:© 2024 American Physical Society.
Funding
This work is supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM) and is part of the D-ITP consortium, a program of the Netherlands Organization for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW).
Funders | Funder number |
---|---|
Stichting voor Fundamenteel Onderzoek der Materie | |
Ministerie van onderwijs, cultuur en wetenschap | |
Nederlandse Organisatie voor Wetenschappelijk Onderzoek |