TY - CHAP
T1 - Function Prediction
AU - Stringer, Bas
AU - Jacobsen, Annika
AU - Hou, Qingzhen
AU - Ferrante, Hans de
AU - Ivanova, Olga
AU - Waury, Katharina
AU - Gavaldá-Garciá, Jose
AU - Abeln, Sanne
AU - Feenstra, K. Anton
N1 - editorial responsability: K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapters. The update adds available arxiv hyperlinks for the chapters
PY - 2023/7/5
Y1 - 2023/7/5
N2 - While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. There are still huge gaps in understanding the molecular function of proteins. This raises the question on how we may predict protein function, when little to no knowledge from direct experiments is available. Protein function is a broad concept which spans different scales: from quantum scale effects for catalyzing enzymatic reactions, to phenotypes that manifest at the organism level. In fact, many of these functional scales are entirely different research areas. Here, we will consider prediction of a smaller range of functions, roughly spanning the protein residue-level up to the pathway level. We will give a conceptual overview of which functional aspects of proteins we can predict, which methods are currently available, and how well they work in practice.
AB - While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. There are still huge gaps in understanding the molecular function of proteins. This raises the question on how we may predict protein function, when little to no knowledge from direct experiments is available. Protein function is a broad concept which spans different scales: from quantum scale effects for catalyzing enzymatic reactions, to phenotypes that manifest at the organism level. In fact, many of these functional scales are entirely different research areas. Here, we will consider prediction of a smaller range of functions, roughly spanning the protein residue-level up to the pathway level. We will give a conceptual overview of which functional aspects of proteins we can predict, which methods are currently available, and how well they work in practice.
KW - q-bio.BM
U2 - 10.48550/arXiv.2307.02173
DO - 10.48550/arXiv.2307.02173
M3 - Chapter
BT - Introduction to Structural Bioinformatics
ER -