Abstract
We developed a multi-mission satellite altimetry analysis over the Antarctic Ice Sheet which comprises Seasat, Geosat, ERS-1, ERS-2, Envisat, ICESat and CryoSat-2. After a consistent reprocessing and a stepwise calibration of the inter-mission offsets, we obtained monthly grids of multi-mission surface elevation change (SEC) with respect to the reference epoch 09/2010 (in the format of month/year) from 1978 to 2017. A validation with independent elevation changes from in situ and airborne observations as well as a comparison with a firn model proves that the different missions and observation modes have been successfully combined to a seamless multi-mission time series. For coastal East Antarctica, even Seasat and Geosat provide reliable information and, hence, allow for the analysis of four decades of elevation changes. The spatial and temporal resolution of our result allows for the identification of when and where significant changes in elevation occurred. These time series add detailed information to the evolution of surface elevation in such key regions as Pine Island Glacier, Totten Glacier, Dronning Maud Land or Lake Vostok. After applying a density mask, we calculated time series of mass changes and found that the Antarctic Ice Sheet north of 81.5° S was losing mass at an average rate of-85±16 Gt yr-1 between 1992 and 2017, which accelerated to-137±25 Gt yr-1 after 2010.
Original language | English |
---|---|
Pages (from-to) | 427-449 |
Number of pages | 23 |
Journal | Cryosphere |
Volume | 13 |
Issue number | 2 |
DOIs | |
Publication status | Published - 5 Feb 2019 |
Funding
Acknowledgements. This work is supported by the Deutsche Bundesstiftung Umwelt (DBU, German Federal Environmental Foundation)) and the German Ministry of Economics and Technology (grant 50EE1331 to Veit Helm). We thank the European Space Agency, the National Snow and Ice Data Center and the NASA Goddard Space Flight Center for providing the altimetry data products. We would especially like to thank Jairo Santana for his support in accessing the GSFC data. We are very grateful for the comments from the anonymous referees, Andrew Shepherd and the editor Etienne Berthier, which significantly helped to improve and clarify the manuscript. We acknowledge support by the Open