Formaldehyde mediated proton-transport catalysis in the ketene-water radical cation CH2=C(=O)OH2•+

R. Lee, P.J.A. Ruttink, P.C. Burgers, J.K. Terlouw

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Previous studies have shown that the solitary ketene-water ion CH2=C(=O)OH2+ (1) does not isomerize into CH2=C(OH)2+ (2), its more stable hydrogen shift isomer. Tandem mass spectrometry based collision experiments reveal that this isomerization does take place in the CH2=O loss from low-energy 1,3-dihydroxyacetone ions (HOCH2)2C=O+. A mechanistic analysis using the CBS-QB3 model chemistry shows that such molecular ions rearrange into hydrogen-bridged radical cations [CH2C(=O)O(H)-H...OCH2]+ in which the CH2O molecule catalyzes the transformation 1->2 prior to dissociation. The barrier for the unassisted reaction, 29 kcal mol-1, is reduced to mere 0.6 kcal mol-1 for the catalysed transformation. Formaldehyde is an efficient catalyst because its proton affinity meets the criterion for facile proton-transport catalysis.
Original languageUndefined/Unknown
Pages (from-to)244-250
Number of pages7
JournalInternational Journal of Mass Spectrometry
Volume255-256
Publication statusPublished - 2006

Cite this