TY - JOUR
T1 - Finite-momentum Bose-Einstein condensates in shaken two-dimensional square optical lattices
AU - Di Liberto, M.F.
AU - Tieleman, O.
AU - Branchina, V.
AU - de Morais Smith, C.
PY - 2011
Y1 - 2011
N2 - We consider ultracold bosons in a two-dimensional square optical lattice described by the Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is applied to the system, which shakes the lattice along one of the diagonals. The effect of the shaking is to renormalize the nearest-neighbor-hopping coefficients, which can be arbitrarily reduced, can vanish, or can even change sign, depending on the shaking parameter.
Therefore, it is necessary to account for higher-order-hopping terms, which are renormalized differently by the shaking, and to introduce anisotropy into the problem. We show that the competition between these different hopping terms leads to finite-momentum condensates with a momentum that may be tuned via the strength of the shaking. We calculate the boundaries between the Mott insulator and the different superfluid phases and
present the time-of-flight images expected to be observed experimentally. Our results open up possibilities for the realization of bosonic analogs of the Fulde, Ferrel, Larkin, and Ovchinnikov phase describing inhomogeneous superconductivity
AB - We consider ultracold bosons in a two-dimensional square optical lattice described by the Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is applied to the system, which shakes the lattice along one of the diagonals. The effect of the shaking is to renormalize the nearest-neighbor-hopping coefficients, which can be arbitrarily reduced, can vanish, or can even change sign, depending on the shaking parameter.
Therefore, it is necessary to account for higher-order-hopping terms, which are renormalized differently by the shaking, and to introduce anisotropy into the problem. We show that the competition between these different hopping terms leads to finite-momentum condensates with a momentum that may be tuned via the strength of the shaking. We calculate the boundaries between the Mott insulator and the different superfluid phases and
present the time-of-flight images expected to be observed experimentally. Our results open up possibilities for the realization of bosonic analogs of the Fulde, Ferrel, Larkin, and Ovchinnikov phase describing inhomogeneous superconductivity
U2 - 10.1103/PhysRevA.84.013607
DO - 10.1103/PhysRevA.84.013607
M3 - Article
SN - 1050-2947
VL - 84
JO - Physical review. A, Atomic, molecular and optical physics
JF - Physical review. A, Atomic, molecular and optical physics
IS - 1
M1 - 013607
ER -