Abstract
The mechanism of crystallization of microporous titanosilicate ETS-10 was investigated by Raman spectroscopy combined with (29)Si magic-angle spinning (MAS) NMR spectroscopy, DFT calculations, and SEM imaging. The formation of three-membered ring species is shown to be the key step in the hydrothermal synthesis of ETS-10. They are formed by means of a complex process that involves the interaction of silicate species in the reaction mixture, which promotes the dissolution of TiO(2) particles. These insights into the mechanism of ETS-10 growth led to the successful development of a new synthesis route to the vanadosilicate AM-6 that involves the use of intermediates that contain three-membered ring species as an initiator.
Original language | English |
---|---|
Pages (from-to) | 12078-12084 |
Number of pages | 7 |
Journal | Chemistry - A European Journal |
Volume | 18 |
Issue number | 38 |
DOIs | |
Publication status | Published - 2012 |