Experimental distributive fluvial systems: Bridging the gap between river and rock record

Renske C. Terwisscha van Scheltinga*, William J. McMahon, Wout M. van Dijk, Joris T. Eggenhuisen, Maarten G. Kleinhans

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

A debate has called into question as to which fluvial channel patterns are most widely represented in the stratigraphic record, with some advocating that distributive fluvial systems (DFS) predominate and others that a broad diversity of fluvial styles may become preserved. Critical to both sides is the adequate recognition of original channel planform from geological outcrops separated from their formative processes by millions or even billions of years. In this study the river and rock record are linked through experimentally created DFSs with both aggrading channel beds and floodplains. This approach allows depositing processes and deposited strata to be studied in tandem. Proximal areas comprise coarse, amalgamated channel-fills with scarce fine-grained floodplain material. The overall spread of sandbody dimensions become far more varied in medial stretches, with an overall reduction in mean width and depth. In these areas channel-fills may be sand-rich or mud-rich and, following avulsion, all channels are covered by floodplain sediment. Channels, levees and splays form discrete depositional bodies each with varying aspect ratios; a novel breadth of deposits and morphologies in aggrading experiments largely concurrent with proposed trends indicative of DFSs. The proportion of floodplain material increases distally, resulting in decreased interconnectedness of distal channel-fills. Muddy floodplain sediments significantly change DFSs behaviour and subsequent stratigraphic architecture by enhancing bank stability and reducing avulsion through the filling of floodbasins. The laboratory methods utilised here open up the possibility of controlled experimentation on the effects and mechanisms of DFSs sedimentation, which is important since the modelled stratigraphic trends are rarely so tractable in ancient geological outcrop belts.

Original languageEnglish
Pages (from-to)670-684
Number of pages15
JournalDepositional Record
Volume6
Issue number3
DOIs
Publication statusPublished - Sept 2020

Funding

The authors would like to acknowledge Thony van der Gon-Netscher and Chris Roosendaal for building and design of the experimental set-up and Paul Vrijbergen for facilitating laboratory space and organizational support. Dr. Dario Ventra and Dr. Jasper Donker are acknowledged for discussions on the data acquisition. Dr Neil S. Davies is thanked for providing the image in Figure?1C. We thank editor Paul Carling, David Hoyal and an anonymous reviewer for the helpful comments and suggestions. Research contributions were supported by (a) Dutch Technology Foundation TTW (grant Vici 016.140.316/13710 to M.G.K.), which is part of the Netherlands Organisation for Scientific Research (NWO) and is partly funded by the Ministry of Economic Affairs and (b) the European Research Council (ERC Consolidator agreement 647570 to M.G.K.).

Keywords

  • avulsion
  • channels
  • facies criteria
  • floodplain
  • morphodynamics
  • stratigraphic record

Fingerprint

Dive into the research topics of 'Experimental distributive fluvial systems: Bridging the gap between river and rock record'. Together they form a unique fingerprint.

Cite this