Exchanging Replicas with Unequal Cost, Infinitely and Permanently

Sander Roet, Daniel T. Zhang, Titus S. van Erp*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We developed a replica exchange method that is effectively parallelizable even if the computational cost of the Monte Carlo moves in the parallel replicas are considerably different, for instance, because the replicas run on different types of processor units or because of the algorithmic complexity. To prove detailed-balance, we make a paradigm shift from the common conceptual viewpoint in which the set of parallel replicas represents a high-dimensional superstate, to an ensemble-based criterion in which the other ensembles represent an environment that might or might not participate in the Monte Carlo move. In addition, based on a recent algorithm for computing permanents, we effectively increase the exchange rate to infinite without the steep factorial scaling as a function of the number of replicas. We illustrate the effectiveness of this replica exchange methodology by combining it with a quantitative path sampling method, replica exchange transition interface sampling (RETIS), in which the costs for a Monte Carlo move can vary enormously as paths in a RETIS algorithm do not have the same length and the average path lengths tend to vary considerably for the different path ensembles that run in parallel. This combination, coined ∞RETIS, was tested on three model systems.
Original languageEnglish
Pages (from-to)8878-8886
JournalJournal of Physical Chemistry A
Volume126
Issue number47
DOIs
Publication statusPublished - 17 Nov 2022
Externally publishedYes

Fingerprint

Dive into the research topics of 'Exchanging Replicas with Unequal Cost, Infinitely and Permanently'. Together they form a unique fingerprint.

Cite this