Abstract

BACKGROUND: Sarcoidosis is a granulomatous disease of unknown etiology. Macrophages play a key role in granuloma formation with the T cells, having a significant impact on macrophage polarization (M1 and M2) and the cellular composition of the granuloma. This study evaluates macrophage polarization in granulomas in pulmonary sarcoidosis.

MATERIALS AND METHODS: Tissue specimens from the Department of Pathology biobank at the Masih Daneshvari Hospital were obtained. Paraffin sections from 10 sarcoidosis patients were compared with those from 12 cases of tuberculosis using immunohistochemical staining. These sections consisted of mediastinal lymph nodes and transbronchial lung biopsy (TBLB) for sarcoidosis patients versus pleural tissue, neck, axillary lymph nodes and TBLB for tuberculosis patients. The sections were stained for T-cells (CD4+, CD8+) and mature B lymphocytes (CD22+). CD14+ and CD68+ staining was used as a marker of M1 macrophages and CD163+ as a marker for M2 macrophages.

RESULTS: Immunohistochemical staining revealed a 4/1 ratio of CD4+/CD8+ T-cells in sarcoidosis granuloma sections and a 3/1 ratio in tuberculosis sections. There was no significance difference in single CD4+, CD8+, CD22+, CD14+ and CD68+ staining between sarcoidosis and tuberculosis sections. CD163 expression was significantly increased in sarcoidosis sections compared with those from tuberculosis subjects.

CONCLUSION: Enhanced CD163+ staining indicates a shift towards M2 macrophage subsets in granulomas from sarcoidosis patients. Further research is required to determine the functional role of M2 macrophages in the immunopathogenesis of sarcoidosis.

Original languageEnglish
Pages (from-to)63-69
Number of pages7
JournalHuman Immunology
Volume79
Issue number1
DOIs
Publication statusPublished - Jan 2018

Keywords

  • Sarcoidosis
  • Tuberculosis
  • Macrophages
  • Th2 Cells

Fingerprint

Dive into the research topics of 'Evidence for M2 macrophages in granulomas from pulmonary sarcoidosis: a new aspect of macrophage heterogeneity'. Together they form a unique fingerprint.

Cite this