Abstract
Virus replicon particles are capable of infection, genome replication and gene expression, but are unable to produce progeny virions, rendering their use inherently safe. By virtue of this unique combination of features, replicon particles hold great promise for vaccine applications. We previously developed replicon particles of Rift Valley fever virus (RVFV) and demonstrated their high efficacy as a RVFV vaccine in the natural target species. We have now investigated the feasibility of using this nonspreading RVFV (NSR) as a vaccine vector using influenza virus hemagglutinin as a model antigen. NSR particles were designed to express either the full-length hemagglutinin of influenza A virus H1N1 (NSR-HA) or the respective soluble ectodomain (NSR-sHA). The efficacies of the two NSR vector vaccines, applied via either the intramuscular or the intranasal route, were evaluated. A single vaccination with NSR-HA protected all mice from a lethal challenge dose, while vaccination with NSR-sHA was not protective. Interestingly, whereas intramuscular vaccination elicited superior systemic immune responses, intranasal vaccination provided optimal clinical protection.
Original language | English |
---|---|
Pages (from-to) | 5323-9 |
Number of pages | 7 |
Journal | Vaccine |
Volume | 32 |
Issue number | 41 |
DOIs | |
Publication status | Published - 15 Sept 2014 |
Keywords
- Vector
- Vaccine
- Nonspreading
- Rift Valley fever virus
- Intranasal
- Hemagglutinina