Ergodicityof N-continuedfractionexpansions

K. Dajani*, C. Kraaikamp, N. van der Wekken

*Corresponding author for this work

    Research output: Contribution to journalArticleAcademicpeer-review

    Abstract

    Recently,EdwardBurgerandhisco-authorsintroducedandstudied in Burgeretal.(2008) [3] a newclassofcontinuedfraction algorithms.Inparticulartheyshowedthatforeveryquadratic irrationalnumber x thereexistinfinitelymanyeventuallyperiodic N-expansionswithperiod-length1;seealsoKomatsu(2009) [10] forrelatedproperties.In2011,MaxwellAnselmandSteven Weintraubfurtherstudiedthepropertiesof N-expansionsin Anselm andWeintraub(2011) [2]. Oneniceresulttheyobtainedis that every x between0and N has uncountablymany N-expansions for eachinteger N 2. Inthispaperwewillreprovethisresultand fromthiswestudytheergodicpropertiesofvarioussubclassesof N-expansions.
    Original languageEnglish
    Pages (from-to)3183-3204
    Number of pages20
    JournalJournal of Number Theory
    Volume133
    Issue number9
    DOIs
    Publication statusPublished - Sept 2013

    Keywords

    • Continued fractions
    • Ergodicity
    • σ-Finite
    • infinite invariant measure

    Fingerprint

    Dive into the research topics of 'Ergodicityof N-continuedfractionexpansions'. Together they form a unique fingerprint.

    Cite this