Abstract
The EMBO Journal (2012) 31, 2247 - 2248
doi:10.1038/emboj.2012.117
Published online: 20 April 2012
There is an Article (May 2012) associated with this Have you seen?.
Epigenetic reprogramming: Prdm14 hits the accelerator
Niels Geijsen1
Hubrecht Institute KNAW, School of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
Correspondence to:
Niels Geijsen, [email protected]
Abstract
The release of epigenetic boundaries during epigenetic reprogramming is poorly understood. In the recent issue of Cell Stem Cell Journal, Gillich and colleagues identify a unique role for Prdm14 in the acceleration of this process (Gillich et al, 2012).
Introduction
Pluripotent stem cells can be established from pre-implantation blastocyst embryos (embryonic stem cells, ESCs) as well as from the post-implantation epiblast stem cells (EpiSCs; Chenoweth et al, 2010). Murine ESCs and EpiSCs both express central pluripotency factors such as Oct4, Nanog and Sox2, yet the different developmental origins of these two cell types is clearly reflected in their molecular, epigenetic and functional properties. Murine ESCs appear to exist in a unique ‘naive’ state reminiscent of the pre-implantation epiblast. They are characterized by the expression of germ cell–related genes, a remarkably open chromatin structure with two active X chromosomes, and the functional ability to contribute to chimera formation upon blastocyst complementation (Nichols and Smith, 2011). In contrast, EpiSCs reflect the properties of the post-implantation epiblast, characterized by low-level expression of early determinants of somatic differentiation, a near-absence of germ cell gene expression, inactivation of one of the X chromosomes and negligible ability to support the development of chimeric mice. The conversion of primed to naive pluripotent state requires the release of epigenetic restrictions that are established in the post-implantation epiblast. It is thus a reprogramming process akin to the derivation of induced pluripotent stem cells (iPSCs) from somatic cells. The results on Prdm14 from Gillich and colleagues offer new insights into the underlying molecular mechanisms governing epigenetic reprogramming.
Original language | Undefined/Unknown |
---|---|
Pages (from-to) | 2247-2248 |
Number of pages | 2 |
Journal | EMBO Journal |
Volume | 2012 |
Issue number | 13 |
DOIs | |
Publication status | Published - 2012 |