Enterovirus D-68 Infection of Primary Rat Cortical Neurons: Entry, Replication, and Functional Consequences

Katrien C K Poelaert, Regina G D M van Kleef, Mengying Liu, Arno van Vliet, Heyrhyoung Lyoo, Lora-Sophie Gerber, Yoshiki Narimatsu, Christian Büll, Henrik Clausen, Erik de Vries, Remco H S Westerink, Frank J M van Kuppeveld*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Enterovirus D68 (EV-D68) is an emerging pathogen associated with mild to severe respiratory disease. Since 2014, EV-D68 is also linked to acute flaccid myelitis (AFM), causing paralysis and muscle weakness in children. However, it remains unclear whether this is due to an increased pathogenicity of contemporary EV-D68 clades or increased awareness and detection of this virus. Here, we describe an infection model of primary rat cortical neurons to study the entry, replication, and functional consequences of different EV-D68 strains, including historical and contemporary strains. We demonstrate that sialic acids are important (co)receptors for infection of both neurons and respiratory epithelial cells. Using a collection of glycoengineered isogenic HEK293 cell lines, we show that sialic acids on either N-glycans or glycosphingolipids can be used for infection. Additionally, we show that both excitatory glutamatergic and inhibitory GABA-ergic neurons are susceptible and permissive to historical and contemporary EV-D68 strains. EV-D68 infection of neurons leads to the reorganization of the Golgi-endomembranes forming replication organelles, first in the soma and later in the processes. Finally, we demonstrate that the spontaneous neuronal activity of EV-D68-infected neuronal network cultured on microelectrode arrays (MEA) is decreased, independent of the virus strain. Collectively, our findings provide novel insights into neurotropism and -pathology of different EV-D68 strains, and argue that it is unlikely that increased neurotropism is a recently acquired phenotype of a specific genetic lineage. IMPORTANCE Acute flaccid myelitis (AFM) is a serious neurological illness characterized by muscle weakness and paralysis in children. Since 2014, outbreaks of AFM have emerged worldwide, and they appear to be caused by nonpolio enteroviruses, particularly enterovirus-D68 (EV-D68), an unusual enterovirus that is known to mainly cause respiratory disease. It is unknown whether these outbreaks reflect a change of EV-D68 pathogenicity or are due to increased detection and awareness of this virus in recent years. To gain more insight herein, it is crucial to define how historical and circulating EV-D68 strains infect and replicate in neurons and how they affect their physiology. This study compares the entry and replication in neurons and the functional consequences on the neural network upon infection with an old "historical" strain and contemporary "circulating" strains of EV-D68.

Original languageEnglish
Article numbere0024523
Number of pages15
JournalmBio
Volume14
Issue number2
Early online date6 Mar 2023
DOIs
Publication statusPublished - Mar 2023

Bibliographical note

Funding Information:
Work in the van Kuppeveld lab was supported by Organovir, a European project funded by the European Union’s Horizon 2020 research and innovation program under the Marie Curie-Slodowska grant agreement nr 812673. ML is supported by a personal grant from the Chinese Scholarship Council (nr 201908350116). Work in the Clausen lab was supported by the Danish National Research Foundation (DNRF107), the Lundbeck Foundation, and the Novo Nordisk Foundation.

Publisher Copyright:
Copyright © 2023 Poelaert et a.

Keywords

  • EV-D68
  • neurotropism
  • receptor

Fingerprint

Dive into the research topics of 'Enterovirus D-68 Infection of Primary Rat Cortical Neurons: Entry, Replication, and Functional Consequences'. Together they form a unique fingerprint.

Cite this