TY - JOUR
T1 - Entanglement spectrum and entanglement Hamiltonian of a Chern insulator with open boundaries
AU - Hermanns, Maria
AU - Salimi, Yann
AU - Haque, Masudul
AU - Fritz, Lars
PY - 2014/10/1
Y1 - 2014/10/1
N2 - We study the entanglement spectrum of a Chern insulator on a cylinder geometry, with the cut separating two partitions parallel to the cylinder edge at varying distances from the edge. In contrast to similar studies on a torus, there is only one cut and hence only one virtual edge mode in the entanglement spectrum. The entanglement spectrum has a gap when the cut is close enough to the physical edge of the cylinder such that the edge mode spatially extends over the cut. This effect is suppressed for parameter choices where the edge mode is sharply localized at the edge. In the extreme case of a perfectly localized edge mode, the entanglement spectrum is gapless, even if the smaller partition consists of a single edge row. For the single-row cut, we construct the corresponding entanglement Hamiltonian, which is a 1D, tight-binding Hamiltonian with complex long-range hopping and interesting properties. We also study and explain the effect of two different schemes of flux insertion through a ring described by such an entanglement Hamiltonian.
AB - We study the entanglement spectrum of a Chern insulator on a cylinder geometry, with the cut separating two partitions parallel to the cylinder edge at varying distances from the edge. In contrast to similar studies on a torus, there is only one cut and hence only one virtual edge mode in the entanglement spectrum. The entanglement spectrum has a gap when the cut is close enough to the physical edge of the cylinder such that the edge mode spatially extends over the cut. This effect is suppressed for parameter choices where the edge mode is sharply localized at the edge. In the extreme case of a perfectly localized edge mode, the entanglement spectrum is gapless, even if the smaller partition consists of a single edge row. For the single-row cut, we construct the corresponding entanglement Hamiltonian, which is a 1D, tight-binding Hamiltonian with complex long-range hopping and interesting properties. We also study and explain the effect of two different schemes of flux insertion through a ring described by such an entanglement Hamiltonian.
KW - Entanglement in extended quantum systems (theory)
UR - http://www.scopus.com/inward/record.url?scp=84908199161&partnerID=8YFLogxK
U2 - 10.1088/1742-5468/2014/10/P10030
DO - 10.1088/1742-5468/2014/10/P10030
M3 - Article
AN - SCOPUS:84908199161
SN - 1742-5468
VL - 2014
JO - Journal of Statistical Mechanics: Theory and Experiment
JF - Journal of Statistical Mechanics: Theory and Experiment
IS - 10
M1 - P10030
ER -