Encapsulation of amphoteric substances in a pH-sensitive pickering emulsion

Martin F. Haase, Dmitry Grigoriev, Helmuth Moehwald, Brigitte Tiersch, Dmitry G. Shchukin

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Oil-in-water (o/w) Pickering emulsions stabilized with silica nanoparticles were prepared. Droplets of diethyl phthalate (oil phase) act as reservoirs for 8-hydroxyquinoline (8-HQ), which is used as (a) the hydrophobizing agent for the silica particles and (b) an encapsulated corrosion inhibitor for application in active feedback coatings. The hydrophobization of silica nanoparticles with 8-HQ is determined by the amount of this agent adsorbed on the nanoparticle surface. The latter is governed by the 8-HQ concentration in the aqueous phase, which in turn depends on the degree of protonation and finally on the pH. We observe three ranges of 8-HQ adsorption value with respect to nanoparticle hydophobization: (1) insufficient, (2) sufficient, and (3) excessive adsorption by the formation of an 8-HQ bilayer, where only case 2 leads to the necessary nanoparticle hydrophobization. Hence emulsions stable in a narrow pH window between pH 5.5 and 4.4 follow. Here functional molecules are sufficiently charged to compensate for the charges on silica nanoparticles to make them interfacially active and thus able to stabilize an emulsion but they are still to a large extent uncharged and thereby remain in the oil phase. The emulsification is reversible upon changing the pH to a value beyond the stability region.

Original languageEnglish
Pages (from-to)17304-17310
Number of pages7
JournalJournal of Physical Chemistry C
Volume114
Issue number41
DOIs
Publication statusPublished - 21 Oct 2010
Externally publishedYes

Fingerprint

Dive into the research topics of 'Encapsulation of amphoteric substances in a pH-sensitive pickering emulsion'. Together they form a unique fingerprint.

Cite this