Elucidating the Exposure Bias in Diffusion Models

Mang Ning, Mingxiao Li, Jianlin Su, Albert Ali Salah, Itir Onal Ertugrul

Research output: Contribution to conferencePaperAcademic

Abstract

Diffusion models have demonstrated impressive generative capabilities, but their exposure bias problem, described as the input mismatch between training and sampling, lacks in-depth exploration. In this paper, we investigate the exposure bias problem in diffusion models by first analytically modelling the sampling distribution, based on which we then attribute the prediction error at each sampling step as the root cause of the exposure bias issue. Furthermore, we discuss potential solutions to this issue and propose an intuitive metric for it. Along with the elucidation of exposure bias, we propose a simple, yet effective, training-free method called Epsilon Scaling to alleviate the exposure bias. We show that Epsilon Scaling explicitly moves the sampling trajectory closer to the vector field learned in the training phase by scaling down the network output, mitigating the input mismatch between training and sampling. Experiments on various diffusion frameworks (ADM, DDIM, EDM, LDM, DiT, PFGM++) verify the effectiveness of our method. Remarkably, our ADM-ES, as a state-of-the-art stochastic sampler, obtains 2.17 FID on CIFAR-10 under 100-step unconditional generation. The code is at https://github.com/forever208/ADM-ES.

Original languageEnglish
Number of pages23
DOIs
Publication statusPublished - Jun 2024
Event12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria
Duration: 7 May 202411 May 2024

Conference

Conference12th International Conference on Learning Representations, ICLR 2024
Country/TerritoryAustria
CityHybrid, Vienna
Period7/05/2411/05/24

Bibliographical note

Publisher Copyright:
© 2024 12th International Conference on Learning Representations, ICLR 2024. All rights reserved.

Fingerprint

Dive into the research topics of 'Elucidating the Exposure Bias in Diffusion Models'. Together they form a unique fingerprint.

Cite this