Abstract
Global warming concern has dramatically increased interest in using CO2 as a feedstock for preparation of value-added compounds, thereby helping to reduce its atmospheric concentration. Here, we describe a dinuclear copper(I) complex that is oxidized in air by CO2 rather than O2; the product is a tetranuclear copper(II) complex containing two bridging CO2-derived oxalate groups. Treatment of the copper(II) oxalate complex in acetonitrile with a soluble lithium salt results in quantitative precipitation of lithium oxalate. The copper(II) complex can then be nearly quantitatively electrochemically reduced at a relatively accessible potential, regenerating the initial dinuclear copper(I) compound. Preliminary results demonstrate six turnovers (producing 12 equivalents of oxalate) during 7 hours of catalysis at an applied potential of –0.03 volts versus the normal hydrogen electrode.
Original language | English |
---|---|
Pages (from-to) | 313-315 |
Number of pages | 3 |
Journal | Science |
Volume | 327 |
Issue number | 5963 |
DOIs | |
Publication status | Published - 2010 |