Abstract
Transition metal dihalides have recently garnered interest in the context of two-dimensional van der Waals magnets as their underlying geometrically frustrated triangular lattice leads to interesting competing exchange interactions. In particular, NiI2 is a magnetic semiconductor that has been long known for its exotic helimagnetism in the bulk. Recent experiments have shown that the helimagnetic state survives down to the monolayer limit with a layer-dependent magnetic transition temperature that suggests a relevant role of the interlayer coupling. Here, we explore the effects of hydrostatic pressure as a means to enhance this interlayer exchange and ultimately tune the electronic and magnetic response of NiI2. We study first the evolution of the structural parameters as a function of external pressure using first-principles calculations combined with x-ray diffraction measurements. We then examine the evolution of the electronic structure and magnetic exchange interactions via first-principles calculations and Monte Carlo simulations. We find that the leading interlayer coupling is an antiferromagnetic second-nearest-neighbor interaction that increases monotonically with pressure. The ratio between isotropic third- and first-nearest-neighbor intralayer exchanges, which controls the magnetic frustration and determines the magnetic propagation vector q of the helimagnetic ground state, is also enhanced by pressure. As a consequence, our Monte Carlo simulations show a monotonic increase in the magnetic transition temperature, indicating that pressure is an effective means to tune the magnetic response of NiI2.
Original language | English |
---|---|
Article number | 014403 |
Journal | Physical Review B |
Volume | 109 |
Issue number | 1 |
DOIs | |
Publication status | Published - 3 Jan 2024 |