Ischemia-reperfusion (IR)-induced acute kidney injury (IRI) is an inevitable event in kidney transplantation. It is a complex pathophysiological process associated with numerous structural and metabolic changes that have a profound influence on the early and the late function of the transplanted kidney. Proximal tubular cells are particularly sensitive to IRI. These cells are involved in renal and whole-body homeostasis, detoxification processes and drugs elimination by a transporter-dependent, transcellular transport system involving Solute Carriers (SLCs) and ATP Binding Cassettes (ABCs) transporters. Numerous studies conducted mainly in animal models suggested that IRI causes decreased expression and activity of some major tubular transporters. This could favor uremic toxins accumulation and renal metabolic alterations or impact the pharmacokinetic/toxicity of drugs used in transplantation. It is of particular importance to understand the underlying mechanisms and effects of IR on tubular transporters in order to improve the mechanistic understanding of IRI pathophysiology, identify biomarkers of graft function or promote the design and development of novel and effective therapies. Modulation of transporters’ activity could thus be a new therapeutic opportunity to attenuate kidney injury during IR.
Original languageEnglish
Article number2610
JournalJournal of Clinical Medicine
Issue number8
Publication statusPublished - 12 Aug 2020


Dive into the research topics of 'Effects of Ischemia-Reperfusion on Tubular Cell Membrane Transporters and Consequences in Kidney Transplantation'. Together they form a unique fingerprint.

Cite this