Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs

ENIGMA-CNV working group, Ida E Sønderby*, Christopher R K Ching, Sophia I Thomopoulos, Dennis van der Meer, Daqiang Sun, Julio E Villalon-Reina, Ingrid Agartz, Katrin Amunts, Celso Arango, Nicola J Armstrong, Rosa Ayesa-Arriola, Geor Bakker, Anne S Bassett, Dorret I Boomsma, Robin Bülow, Nancy J Butcher, Vince D Calhoun, Svenja Caspers, Eva W C ChowSven Cichon, Simone Ciufolini, Michael C Craig, Benedicto Crespo-Facorro, Adam C Cunningham, Anders M Dale, Paola Dazzan, Greig I de Zubicaray, Srdjan Djurovic, Joanne L Doherty, Gary Donohoe, Bogdan Draganski, Courtney A Durdle, Stefan Ehrlich, Beverly S Emanuel, Thomas Espeseth, Simon E Fisher, Tian Ge, David C Glahn, Hans J Grabe, Raquel E Gur, Boris A Gutman, Jan Haavik, Asta K Håberg, Laura A Hansen, Ryota Hashimoto, Derrek P Hibar, Avram J Holmes, Jouke-Jan Hottenga, Hilleke E Hulshoff Pol, Maria Jalbrzikowski

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

Abstract

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.

Original languageEnglish
Pages (from-to)300-328
Number of pages29
JournalHuman Brain Mapping
Volume43
Issue number1
DOIs
Publication statusPublished - Jan 2022
Externally publishedYes

Bibliographical note

© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Keywords

  • Brain/diagnostic imaging
  • DNA Copy Number Variations
  • Humans
  • Magnetic Resonance Imaging
  • Mental Disorders/diagnostic imaging
  • Multicenter Studies as Topic
  • Neurodevelopmental Disorders/diagnostic imaging
  • Neuroimaging

Fingerprint

Dive into the research topics of 'Effects of copy number variations on brain structure and risk for psychiatric illness: Large-scale studies from the ENIGMA working groups on CNVs'. Together they form a unique fingerprint.

Cite this