TY - JOUR
T1 - Drivers of Dyadic Cofeeding Tolerance in Pan
T2 - A Composite Measure Approach
AU - Staes, Nicky
AU - Vermeulen, Kim
AU - van Leeuwen, Edwin J C
AU - Verspeek, Jonas
AU - Torfs, Jonas R R
AU - Eens, Marcel
AU - Stevens, Jeroen M G
N1 - Funding Information:
Funding: N.S., E.J.C.v.L. and J.T. were funded by the Research Foundation Flanders (FWO), grant numbers 1124921N and 12Q5419N.
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5/1
Y1 - 2022/5/1
N2 - This study aimed to construct a composite model of Dyadic Cofeeding Tolerance (DCT) in zoo-housed bonobos and chimpanzees using a validated experimental cofeeding paradigm and to investigate whether components resulting from this model differ between the two species or vary with factors such as sex, age, kinship and social bond strength. Using dimension reduction analysis on five behavioral variables from the experimental paradigm (proximity, aggression, food transfers, negative food behavior, participation), we found a two-factor model: "Tolerant Cofeeding" and "Agonistic Cofeeding". To investigate the role of social bond quality on DCT components alongside species effects, we constructed and validated a novel relationship quality model for bonobos and chimpanzees combined, resulting in two factors: Relationship Value and Incompatibility. Interestingly, bonobos and chimpanzees did not differ in DCT scores, and sex and kinship effects were identical in both species but biased by avoidance of the resource zone by male-male dyads in bonobos. Social bonds impacted DCT similarly in both species, as dyads with high Relationship Value showed more Tolerant Cofeeding, while dyads with higher Relationship Incompatibility showed more Agonistic Cofeeding. We showed that composite DCT models can be constructed that take into account both negative and positive cofeeding behavior. The resulting DCT scores were predicted by sex, kinship and social bonds in a similar fashion in both Pan species, likely reflecting their adaptability to changing socio-ecological environments. This novel operational measure to quantify cofeeding tolerance can now be applied to a wider range of species in captivity and the wild to see how variation in local socio-ecological circumstances influences fitness interdependence and cofeeding tolerance at the dyadic and group levels. This can ultimately lead to a better understanding of how local environments have shaped the evolution of tolerance in humans and other species.
AB - This study aimed to construct a composite model of Dyadic Cofeeding Tolerance (DCT) in zoo-housed bonobos and chimpanzees using a validated experimental cofeeding paradigm and to investigate whether components resulting from this model differ between the two species or vary with factors such as sex, age, kinship and social bond strength. Using dimension reduction analysis on five behavioral variables from the experimental paradigm (proximity, aggression, food transfers, negative food behavior, participation), we found a two-factor model: "Tolerant Cofeeding" and "Agonistic Cofeeding". To investigate the role of social bond quality on DCT components alongside species effects, we constructed and validated a novel relationship quality model for bonobos and chimpanzees combined, resulting in two factors: Relationship Value and Incompatibility. Interestingly, bonobos and chimpanzees did not differ in DCT scores, and sex and kinship effects were identical in both species but biased by avoidance of the resource zone by male-male dyads in bonobos. Social bonds impacted DCT similarly in both species, as dyads with high Relationship Value showed more Tolerant Cofeeding, while dyads with higher Relationship Incompatibility showed more Agonistic Cofeeding. We showed that composite DCT models can be constructed that take into account both negative and positive cofeeding behavior. The resulting DCT scores were predicted by sex, kinship and social bonds in a similar fashion in both Pan species, likely reflecting their adaptability to changing socio-ecological environments. This novel operational measure to quantify cofeeding tolerance can now be applied to a wider range of species in captivity and the wild to see how variation in local socio-ecological circumstances influences fitness interdependence and cofeeding tolerance at the dyadic and group levels. This can ultimately lead to a better understanding of how local environments have shaped the evolution of tolerance in humans and other species.
KW - Pan paniscus
KW - Pan troglodytes
KW - tolerance experiment
KW - relationship quality
KW - principal component analysis
UR - http://www.scopus.com/inward/record.url?scp=85130197234&partnerID=8YFLogxK
U2 - 10.3390/biology11050713
DO - 10.3390/biology11050713
M3 - Article
C2 - 35625440
SN - 2079-7737
VL - 11
SP - 1
EP - 21
JO - Biology
JF - Biology
IS - 5
M1 - 713
ER -