Domain growth in polycrystalline graphene

Zihua Liu, Deb Panja, Gerard Barkema*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Graphene is a two-dimensional carbon allotrope which exhibits exceptional properties, making it highly suitable for a wide range of applications. Practical graphene fabrication often yields a polycrystalline structure with many inherent defects, which significantly influence its performance. In this study, we utilize a Monte Carlo approach based on the optimized Wooten, Winer and Weaire (WWW) algorithm to simulate the crystalline domain coarsening process of polycrystalline graphene. Our sample configurations show excellent agreement with experimental data. We conduct statistical analyses of the bond and angle distribution, temporal evolution of the defect distribution, and spatial correlation of the lattice orientation that follows a stretched exponential distribution. Furthermore, we thoroughly investigate the diffusion behavior of defects and find that the changes in domain size follow a power-law distribution. We briefly discuss the possible connections of these results to (and differences from) domain growth processes in other statistical models, such as the Ising dynamics. We also examine the impact of buckling of polycrystalline graphene on the crystallization rate under substrate effects. Our findings may offer valuable guidance and insights for both theoretical investigations and experimental advancements.

Original languageEnglish
Article number3127
Pages (from-to)1-13
Number of pages13
JournalNanomaterials
Volume13
Issue number24
DOIs
Publication statusPublished - 13 Dec 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

Funding

Z.L. acknowledges financial support from the China Scholarship Council (CSC).

FundersFunder number
China Scholarship Council

    Keywords

    • Monte Carlo dynamics
    • disordered materials
    • domain growth
    • grain boundary
    • polycrystalline graphene

    Fingerprint

    Dive into the research topics of 'Domain growth in polycrystalline graphene'. Together they form a unique fingerprint.

    Cite this