TY - JOUR
T1 - Distributions and sources of isoprenoidal GDGTs in Lake Lugano and other central European (peri-)alpine lakes
T2 - Lessons for their use as paleotemperature proxies
AU - Sinninghe Damsté, J.S.
AU - Weber, Y.
AU - Zopfi, J.
AU - Lehmann, M.F.
AU - Niemann, H.
N1 - Cited By :4
Export Date: 9 January 2023
PY - 2022/2/1
Y1 - 2022/2/1
N2 - Isoprenoidal glycerol dialkyl glycerol tetraether (isoGDGT) lipids occur ubiquitously in freshwater and marine environments. Since their distribution varies with temperature, sedimentary isoGDGTs have been used as proxies for the reconstruction of past continental climate for almost two decades. Yet, their application in lacustrine sediments is still not well constrained because the niches of isoGDGT-producing microorganisms in lakes are often ill-defined. Here, we study the distribution of isoGDGTs and their hydroxy derivatives (OH-isoGDGTs) in the water column of the deep (288 m), meromictic northern basin of Lake Lugano (Switzerland) using quantitative analysis of various pools of isoGDGTs and the stable carbon isotopic composition of isoGDGT-derived biphytanes. We provide strong evidence for archaeal water column sources of the isoGDGTs, based on comparison of lipid data with microbial diversity determined by 16S rRNA next generation sequencing. We find highest concentrations (i.e., 40 ng L−1) of crenarchaeol, the isoGDGTs specific for thaumarchaea, in suspended particle matter (SPM) from deeper (30–100 m) waters below the thermocline. This correlates well with thaumarchaeal 16S rRNA gene abundances, comprised by a single thaumarchaeote of the order Nitrosopumilales. The concentrations of OH-isoGDGT with 0–2 cyclopentane rings follow this profile, suggesting an identical archaeal source. In the deeper anoxic waters, the archaeal community changes substantially and was comprised of various members of the Bathyarchaeota, Diapherotrites, Euryarchaeota, and Woesearchaeota. This change is accompanied by a changing distribution of isoGDGTs with a high contribution of GDGT-0 with a polar head group, and a more negative δ13C value of the acyclic biphytane derived thereof. Comparison of the isoGDGT composition (distribution and δ13C) in the surface sediment with that of the sinking particle flux studied over 1 year at three depths indicates substantial downward transport of isoGDGTs to the sediments from the waters between the thermocline and the anoxic hypolimnion, but not from the deeper (>100 m) waters. The relatively low value for the isoGDGT-based TEX86 value (ca. 0.40) in the surface sediment is similar to that of the in-situ produced isoGDGTs in the waters below the thermocline, and is consistent with the year-around low water temperatures (
AB - Isoprenoidal glycerol dialkyl glycerol tetraether (isoGDGT) lipids occur ubiquitously in freshwater and marine environments. Since their distribution varies with temperature, sedimentary isoGDGTs have been used as proxies for the reconstruction of past continental climate for almost two decades. Yet, their application in lacustrine sediments is still not well constrained because the niches of isoGDGT-producing microorganisms in lakes are often ill-defined. Here, we study the distribution of isoGDGTs and their hydroxy derivatives (OH-isoGDGTs) in the water column of the deep (288 m), meromictic northern basin of Lake Lugano (Switzerland) using quantitative analysis of various pools of isoGDGTs and the stable carbon isotopic composition of isoGDGT-derived biphytanes. We provide strong evidence for archaeal water column sources of the isoGDGTs, based on comparison of lipid data with microbial diversity determined by 16S rRNA next generation sequencing. We find highest concentrations (i.e., 40 ng L−1) of crenarchaeol, the isoGDGTs specific for thaumarchaea, in suspended particle matter (SPM) from deeper (30–100 m) waters below the thermocline. This correlates well with thaumarchaeal 16S rRNA gene abundances, comprised by a single thaumarchaeote of the order Nitrosopumilales. The concentrations of OH-isoGDGT with 0–2 cyclopentane rings follow this profile, suggesting an identical archaeal source. In the deeper anoxic waters, the archaeal community changes substantially and was comprised of various members of the Bathyarchaeota, Diapherotrites, Euryarchaeota, and Woesearchaeota. This change is accompanied by a changing distribution of isoGDGTs with a high contribution of GDGT-0 with a polar head group, and a more negative δ13C value of the acyclic biphytane derived thereof. Comparison of the isoGDGT composition (distribution and δ13C) in the surface sediment with that of the sinking particle flux studied over 1 year at three depths indicates substantial downward transport of isoGDGTs to the sediments from the waters between the thermocline and the anoxic hypolimnion, but not from the deeper (>100 m) waters. The relatively low value for the isoGDGT-based TEX86 value (ca. 0.40) in the surface sediment is similar to that of the in-situ produced isoGDGTs in the waters below the thermocline, and is consistent with the year-around low water temperatures (
KW - Quaternary
KW - Paleolimnology
KW - Western europe
KW - Organic geochemistry
KW - TEX86
KW - Isoprenoidal GDGTs
KW - Hydroxy GDGTs
KW - Microbial ecology
KW - 16S rDNA gene amplification
KW - Archaea
U2 - 10.1016/j.quascirev.2021.107352
DO - 10.1016/j.quascirev.2021.107352
M3 - Article
SN - 0277-3791
VL - 277
SP - 1
EP - 22
JO - Quaternary Science Reviews
JF - Quaternary Science Reviews
M1 - 107352
ER -