TY - JOUR
T1 - Dispersal versus environmental filtering in a dynamic system
T2 - Drivers of vegetation patterns and diversity along stream riparian gradients
AU - Fraaije, Rob G.A.
AU - ter Braak, Cajo J.F.
AU - Verduyn, G
AU - Verhoeven, Jos T.A.
AU - Soons, Merel B.
PY - 2015/11/1
Y1 - 2015/11/1
N2 - Both environmental filtering and dispersal filtering are known to influence plant species distribution patterns and biodiversity. Particularly in dynamic habitats, however, it remains unclear whether environmental filtering (stimulated by stressful conditions) or dispersal filtering (during recolonization events) dominates in community assembly, or how they interact. Such a fundamental understanding of community assembly is critical to the design of biodiversity conservation and restoration strategies. Stream riparian zones are species-rich dynamic habitats. They are characterized by steep hydrological gradients likely to promote environmental filtering, and by spatiotemporal variation in the arrival of propagules likely to promote dispersal filtering. We quantified the contributions of both filters by monitoring natural seed arrival (dispersal filter) and experimentally assessing germination, seedling survival and growth of 17 riparian plant species (environmental filter) along riparian gradients of three lowland streams that were excavated to bare substrate for restoration. Subsequently, we related spatial patterns in each process to species distribution and diversity patterns after 1 and 2 years of succession. Patterns in initial seed arrival were very clearly reflected in species distribution patterns in the developing vegetation and were more significant than environmental filtering. However, environmental filtering intensified towards the wet end of the riparian gradient, particularly through effects of flooding on survival and growth, which strongly affected community diversity and generated a gradient in the vegetation. Strikingly, patterns in seed arrival foreshadowed the gradient that developed in the vegetation; seeds of species with adult optima at wetter conditions dominated seed arrival at low elevations along the riparian gradient, while seeds of species with drier optima arrived higher up. Despite previous assertions suggesting a dominance of environmental filtering, our results demonstrate that non-random dispersal may be an important driver of early successional riparian vegetation zonation and biodiversity patterns as well. Synthesis. Our results demonstrate (and quantify) the strong roles of both environmental and dispersal filtering in determining plant community assemblies in early successional dynamic habitats. Furthermore, we demonstrate that dispersal filtering can already initiate vegetation gradients, a mechanism that may have been overlooked along many environmental gradients where interspecific interactions are (temporarily) reduced. Our results demonstrate and quantify the strong roles of both environmental and dispersal filtering in determining plant community assemblies in early successional dynamic habitats. Furthermore, we demonstrate that dispersal filtering can already initiate vegetation gradients, a mechanism that may have been overlooked along many environmental gradients where interspecific interactions are (temporarily) reduced.
AB - Both environmental filtering and dispersal filtering are known to influence plant species distribution patterns and biodiversity. Particularly in dynamic habitats, however, it remains unclear whether environmental filtering (stimulated by stressful conditions) or dispersal filtering (during recolonization events) dominates in community assembly, or how they interact. Such a fundamental understanding of community assembly is critical to the design of biodiversity conservation and restoration strategies. Stream riparian zones are species-rich dynamic habitats. They are characterized by steep hydrological gradients likely to promote environmental filtering, and by spatiotemporal variation in the arrival of propagules likely to promote dispersal filtering. We quantified the contributions of both filters by monitoring natural seed arrival (dispersal filter) and experimentally assessing germination, seedling survival and growth of 17 riparian plant species (environmental filter) along riparian gradients of three lowland streams that were excavated to bare substrate for restoration. Subsequently, we related spatial patterns in each process to species distribution and diversity patterns after 1 and 2 years of succession. Patterns in initial seed arrival were very clearly reflected in species distribution patterns in the developing vegetation and were more significant than environmental filtering. However, environmental filtering intensified towards the wet end of the riparian gradient, particularly through effects of flooding on survival and growth, which strongly affected community diversity and generated a gradient in the vegetation. Strikingly, patterns in seed arrival foreshadowed the gradient that developed in the vegetation; seeds of species with adult optima at wetter conditions dominated seed arrival at low elevations along the riparian gradient, while seeds of species with drier optima arrived higher up. Despite previous assertions suggesting a dominance of environmental filtering, our results demonstrate that non-random dispersal may be an important driver of early successional riparian vegetation zonation and biodiversity patterns as well. Synthesis. Our results demonstrate (and quantify) the strong roles of both environmental and dispersal filtering in determining plant community assemblies in early successional dynamic habitats. Furthermore, we demonstrate that dispersal filtering can already initiate vegetation gradients, a mechanism that may have been overlooked along many environmental gradients where interspecific interactions are (temporarily) reduced. Our results demonstrate and quantify the strong roles of both environmental and dispersal filtering in determining plant community assemblies in early successional dynamic habitats. Furthermore, we demonstrate that dispersal filtering can already initiate vegetation gradients, a mechanism that may have been overlooked along many environmental gradients where interspecific interactions are (temporarily) reduced.
KW - Community assembly
KW - Determinants of plant community diversity and structure
KW - Directed dispersal
KW - Hydrological gradients
KW - Lowland streams
KW - Neutral versus niche
KW - Plant diversity
KW - Riparian vegetation
KW - Riparian zone
KW - Wetland restoration
UR - http://www.scopus.com/inward/record.url?scp=84944514948&partnerID=8YFLogxK
U2 - 10.1111/1365-2745.12460
DO - 10.1111/1365-2745.12460
M3 - Article
AN - SCOPUS:84944514948
SN - 0022-0477
VL - 103
SP - 1634
EP - 1646
JO - Journal of Ecology
JF - Journal of Ecology
IS - 6
ER -