TY - JOUR
T1 - Discrimination thresholds for haptic perception of volume, surface area, and weight
AU - Kahrimanovic, M.
AU - Bergmann Tiest, W.M.
AU - Kappers, A.M.L.
PY - 2011
Y1 - 2011
N2 - The present study investigated the human ability to discriminate the size of 3-D objects by touch. Experiment 1 measured the just noticeable differences (JNDs) for three tasks: (1) discrimination of volume without availability of weight information, (2) discrimination of volume with weight information available, and (3) discrimination of surface area. Stimuli consisted of spheres, cubes, and tetrahedrons. For all shapes, two reference sizes were used (3.5 and 12 cm3). No significant effect of task on the discriminability of objects was found, but the effects of shape and size were significant, as well as the interaction between these two factors. Post hoc analysis revealed that for the small reference, the Weber fractions for the tetrahedron were significantly larger than the fractions for the cube and the sphere. In Experiment 2, the JNDs for haptic perception of weight were measured for the same objects as those used in Experiment 1. The shape of objects had no significant effect on the Weber fractions for weight, but the Weber fractions for the small stimuli were larger than the fractions for the large stimuli. Surprisingly, a comparison between the two experiments showed that the Weber fractions for weight were significantly larger than the fractions for volume with availability of weight information. Taken together, the results reveal that volume and weight information are not effectively combined in discrimination tasks. This study provides detailed insight into the accuracy of the haptic system in discriminating objects’ size. This substantial set of data satisfies the need for more fundamental knowledge on haptic size perception, necessary for a greater understanding of the perception of related properties, as well as of more general perceptual processes.
AB - The present study investigated the human ability to discriminate the size of 3-D objects by touch. Experiment 1 measured the just noticeable differences (JNDs) for three tasks: (1) discrimination of volume without availability of weight information, (2) discrimination of volume with weight information available, and (3) discrimination of surface area. Stimuli consisted of spheres, cubes, and tetrahedrons. For all shapes, two reference sizes were used (3.5 and 12 cm3). No significant effect of task on the discriminability of objects was found, but the effects of shape and size were significant, as well as the interaction between these two factors. Post hoc analysis revealed that for the small reference, the Weber fractions for the tetrahedron were significantly larger than the fractions for the cube and the sphere. In Experiment 2, the JNDs for haptic perception of weight were measured for the same objects as those used in Experiment 1. The shape of objects had no significant effect on the Weber fractions for weight, but the Weber fractions for the small stimuli were larger than the fractions for the large stimuli. Surprisingly, a comparison between the two experiments showed that the Weber fractions for weight were significantly larger than the fractions for volume with availability of weight information. Taken together, the results reveal that volume and weight information are not effectively combined in discrimination tasks. This study provides detailed insight into the accuracy of the haptic system in discriminating objects’ size. This substantial set of data satisfies the need for more fundamental knowledge on haptic size perception, necessary for a greater understanding of the perception of related properties, as well as of more general perceptual processes.
U2 - 10.3758/s13414-011-0202-y
DO - 10.3758/s13414-011-0202-y
M3 - Article
SN - 1943-3921
VL - 73
SP - 2649
EP - 2656
JO - Attention, perception, & psychophysics
JF - Attention, perception, & psychophysics
IS - 8
ER -