Design of OSMI-4 Analogs Using Scaffold Hopping: Investigating the Importance of the Uridine Mimic in the Binding of OGT Inhibitors

Cyril Balsollier, Tihomir Tomašič, Daniel Yasini, Simon Bijkerk, Marko Anderluh, Roland J Pieters*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

β-N-Acetylglucosamine transferase (OGT) inhibition is considered an important topic in medicinal chemistry. The involvement of O-GlcNAcylation in several important biological pathways is pointing to OGT as a potential therapeutic target. The field of OGT inhibitors drastically changed after the discovery of the 7-quinolone-4-carboxamide scaffold and its optimization to the first nanomolar OGT inhibitor: OSMI-4. While OSMI-4 is still the most potent inhibitor reported to date, its physicochemical properties are limiting its use as a potential drug candidate as well as a biological tool. In this study, we have introduced a simple modification (elongation) of the peptide part of OSMI-4 that limits the unwanted cyclisation during OSMI-4 synthesis while retaining OGT inhibitory potency. Secondly, we have kept this modified peptide unchanged while incorporating new sulfonamide UDP mimics to try to improve binding of newly designed OGT inhibitors in the UDP-binding site. With the use of computational methods, a small library of OSMI-4 derivatives was designed, prepared and evaluated that provided information about the OGT binding pocket and its specificity toward quinolone-4-carboxamides.

Original languageEnglish
Article numbere202300001
JournalChemMedChem
Volume18
Issue number8
DOIs
Publication statusPublished - 17 Apr 2023

Keywords

  • O-GlcNAcylation
  • enzyme inhibition
  • molecular docking
  • scaffold hopping
  • virtual screening

Fingerprint

Dive into the research topics of 'Design of OSMI-4 Analogs Using Scaffold Hopping: Investigating the Importance of the Uridine Mimic in the Binding of OGT Inhibitors'. Together they form a unique fingerprint.

Cite this