Del Pezzo surfaces of degree four violating the hasse principle are Zariski dense in the moduli scheme

Jörg Jahnel, Damaris Schindler

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

We show that, over every number field, the degree four del Pezzo surfaces that violate the Hasse principle are Zariski dense in the moduli scheme. Keywords: Del Pezzo surface, Hasse principle, moduli scheme.

Original languageEnglish
Pages (from-to)1783-1807
Number of pages25
JournalAnnales de l'Institut Fourier
Volume67
Issue number4
DOIs
Publication statusPublished - 1 Jan 2017

Keywords

  • Del Pezzo surface
  • Hasse principle
  • Moduli scheme

Fingerprint

Dive into the research topics of 'Del Pezzo surfaces of degree four violating the hasse principle are Zariski dense in the moduli scheme'. Together they form a unique fingerprint.

Cite this