Abstract
We consider a family of deformations of T^{1,1} in the Yang-Baxter sigma model approach. We first discuss a supercoset description of T^{1,1}, which makes manifest the full symmetry of the space and leads to the standard Sasaki-Einstein metric. Next, we consider three-parameter deformations of T^{1,1} by using classical r-matrices satisfying the classical Yang-Baxter equation (CYBE). The resulting metric and NS-NS two-form agree exactly with the ones obtained via TsT transformations, and contain the Lunin-Maldacena background as a special case. It is worth noting that for AdS_5 x T^{1,1}, classical integrability for the full sector has been argued to be lost. Hence our result indicates that the Yang-Baxter sigma model approach is applicable even for non-integrable cosets. This observation suggests that the gravity/CYBE correspondence can be extended beyond integrable cases.
Original language | English |
---|---|
Publication status | Published - 9 Jun 2014 |
Bibliographical note
21 pages, no figure, LaTeX, v2:clarifications and references added, v3:minor corrections, further clarifications addedKeywords
- hep-th
- gr-qc
- math-ph
- math.MP
- nlin.SI